Vol. 138
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-04-04
A Physical Optics Approach to the Analysis of Large Frequency Selective Radomes
By
Progress In Electromagnetics Research, Vol. 138, 537-553, 2013
Abstract
State-of-the-art radomes exploit frequency selective media so as to be transparent for the frequencies of the antenna protected by them and opaque to other frequencies. This feature helps in reducing the radar cross section of the antenna and in protecting it from interference. The study of a frequency selective radome is a daunting task, since the radome is usually large in terms of wavelengths, hence full wave analyses are prohibitive. In this paper an approximate technique, based on the physical optics concept, is proposed to attain an estimation of the behavior of a radome shielded antenna in a short time with a commonly available computer. Results are validated against a full wave technique over a relatively small radome.
Citation
Ugo d'Elia, Giuseppe Pelosi, Christian Pichot, Stefano Selleri, and Massimo Zoppi, "A Physical Optics Approach to the Analysis of Large Frequency Selective Radomes," Progress In Electromagnetics Research, Vol. 138, 537-553, 2013.
doi:10.2528/PIER13012810
References

1. Paris, , D., "Computer-aided radome analysis," IEEE Trans. on Antennas and Propag., Vol. 18, 7-15, 1970.
doi:10.1109/TAP.1970.1139614

2. Einziger, , P., L. Felsen, and , "Ray analysis of two-dimensional radomes," IEEE Trans. on Antennas and Propag., Vol. 31, 870-884, 1985.
doi:10.1109/TAP.1983.1143156

3. Gao, , X., L. Felsen, and , "Complex ray analysis of beam transmission through two-dimensional radomes," IEEE Trans. on Antennas and Propag., Vol. 33, 963-975, 1985.
doi:10.1109/TAP.1985.1143711

4. Orta, , R., R. Tascone, and R. Zich, "Performance degradation of dielectric radome covered antennas," IEEE Trans. on Antennas and Propag., Vol. 36, 1707-1713, 1988.
doi:10.1109/8.14392

5. Harington, , R., J. Mautz, and , "An impedance sheet approximation for thin dielectric shells," IEEE Trans. on Antennas and Propag., Vol. 23, 531-534, 1975.
doi:10.1109/TAP.1975.1141099

6. Arvas, E., S. Ponnapali, and , "Scattering cross section of a radome of arbitrary shape," EEE Trans. on Antennas and Propag., Vol. 37, 655-658, 1989.
doi:10.1109/8.24194

7. Arvas, E., A. Rahhalarabi, U. Pekel, and E. Gundogan, "Electromagnetic transmission through a small radome of arbitrary shape," IEE Proc. H, Microw. Antenn. Propagat., Vol. 137, 401-405, 1990.
doi:10.1049/ip-h-2.1990.0072

8. Meng, , H. and W.-B. Dou, "Fast analysis of electrically large radome in millimeter wave band with fast multipole acceleration," Progress In Electromagnetics Research, Vol. 120, 371-385, 2011.

9. Gordon, R. and R. Mittra, "Finite element analysis of axisymmetric radomes," IEEE Trans. on Antennas and Propag.,, Vol. 41, 975-981, 1993.
doi:10.1109/8.237631

10. Zhongxiang, , S., J. Volakis, and , "A hybrid physical opticsmoment method for large nose radome antennas," Proc. IEEE Antennas and Propagation Symposium, 2554-2557, 1999.

11. Abdel Moneum, , M., Z. Shen, J. Volakis, and O. Graham, "Hybrid PO-MoM analysis of large axi-symmetric radomes," IEEE Trans. on Antennas and Propag., Vol. 49, 1657-1666, 2001.
doi:10.1109/8.982444

12. Hu, , B., X.-W. Xu, M. He, and Y. Zheng, "More accurate hybrid PO-MoM analysis for an electrically large antenna-radome structure," Progress In Electromagnetics Research, Vol. 92, 255-265, 2009.
doi:10.2528/PIER09022301

13. Meng, H., W.-B. Dou, and , "A hybrid method for the analysis of radome-enclosed horn antenna," Progress In Electromagnetics Research, Vol. 90, 219-233, 2009.
doi:10.2528/PIER08122502

14. Sukharevsky, O., V. Vasilets, and , "Scattering of reflector antenna with conic dielectric radome," Progress In Electromagnetics Research B,, Vol. 4, 159-169, 2008.
doi:10.2528/PIERB08011404

15. Pous, , R. and D. Pozar, "A frequency-selective surface using aperture-coupled microstrip patches," IEEE Trans. on Antennas and Propag., Vol. 39, 1763-1769, 1991.
doi:10.1109/8.121598

16. Lin, , B.-Q., F. Li, Q.-R. Zheng, and Y.-S. Zen, "Design and simulation of a miniature thick-screen frequency selective surface radome," IEEE Antennas Wireless Propag. Lett.,, Vol. 8, 1065-1068, 2009.
doi:10.1109/LAWP.2009.2032251

17. Munk, B., Frequency Selective Surfaces, Theory and Design, John Wiley & Sons Inc., , 2000.
doi:10.1002/0471723770

18. Ford, , K., B. Chambers, and , "Improvement in the low frequency performance of geometric transition radar absorbers using square loop impedance layers," IEEE Trans. on Antennas and Propag., Vol. 56, , 133-141, 2008.
doi:10.1109/TAP.2007.913086

19. dElia, , U., G. Pelosi, S. Selleri, and R. Taddei, "A carbon nanotube based frequency-selective absorber," Int. J. Microw. Wireless Tech.,, Vol. 2, 479-485, 2010.
doi:10.1017/S1759078710000693

20. Rahmat-Samii, , Y., A. Tulintseff, and , "Diffraction analysis of frequency selective reflector antennas," IEEE Trans. on Antennas and Propag., Vol. 41, 476-487, 1993.
doi:10.1109/8.220980

21. Wu, , T.-K., S.-W. Lee, and , "Multiband frequency selective surface with multiring patch elements," IEEE Trans. on Antennas and Propag., Vol. 42, 1484-1490, 1994.
doi:10.1109/8.362790

22. Moore, E., "A 10--183 GHz common aperture antenna with a quasioptical frequency multiplexer," Proc. Combined Optical- Microwave Earth and Atmosphere Sensing Symposium, 220-222, 1995.
doi:10.1109/COMEAS.1995.472316

23. Erdemli, , Y., K. Sertel, R. Gilbert, D. Wright, and J. Volakis, "Frequency-selective surfaces to enhance performance of broad band reconfigurable arrays," IEEE Trans. on Antennas and Propag., Vol. 50, 1716-1724, 2002.
doi:10.1109/TAP.2002.807377

24. Zadeh, , A. and A. Karlsson, "Capacitive circuit method for fast and e±cient design of wideband radar absorbers," IEEE Trans. on Antennas and Propag., Vol. 57, 2307-2314, 2009.
doi:10.1109/TAP.2009.2024490

25. Munir, , A., V. Fusco, and O. Malyunskin, "Tunable frequency selective surface characterization," Proc. European Microwave Conference, 813-816, 2008..

26. Cecchini, R., R. Coccioli, and G. Pelosi, "PERIODIC3: A software package for the analysis of artificially anisotropic surfaces," IEEE Antennas Propag. Mag., Vol. 37, 84-86, 1995.
doi:10.1109/74.382353

27. Pelosi, , G., R. Coccioli, and S. Selleri, Quick Finite Elements for Electromagnetic Waves , 2nd Ed., Artech House, , 2009.

28. Parker, , E., B. Philips, and R. Langley, "Ray tracing analysis of the transmission performance on curved FSS," IEE Proc. Microwaves Antennas Propagat., Vol. 142, 193-200, 1995.
doi:10.1049/ip-map:19951896

29. Stanley, , A., E. Parker, and , "Ray tracing fields backscattered from curved dichroic structures," IEE Proc. Microwaves, Antennas Propagat.,, Vol. 145, 406-410, 1998.
doi:10.1049/ip-map:19982245

30. Pei, , Y., A. Zeng, L. Zhou, R. Zhang, and K. Xu, "Electromagnetic optimal design for dual-band radome wall with alternating layers of staggered composite and kagome lattice structure," Progress In Electromagnetics Research, Vol. 122, 437-452, 2012.
doi:10.2528/PIER11101906

31. Zhou, , L., Y. Pei, R. Zhang, and D. Fang, "Optimal design for high-temperature broadband radome wall with symmetrical graded porous structure," Progress In Electromagnetics Research, Vol. 127, 1-14, 2012.
doi:10.2528/PIER12030203

32. Stupfel, , B. , "Impedance boundary conditions for finite planar or curved frequency selective surfaces embedded in dielectric layers," IEEE Trans. on Antennas and Propag., Vol. 53, 3654-3663, 2005.
doi:10.1109/TAP.2005.858803

33. Parker, E., B. Philips, and R. Langley, "Analysis of coupling between a curved FSS and an enclosed planar dipole array," IEEE Microw. Guided Wave Lett.,, Vol. 5, 338-340, 1995.
doi:10.1109/75.465044

34. Pelosi, , G., G. Toso, and E. Martini, "PO field expression of a penetrable planar structure in terms of line integral," IEEE Trans. on Antennas and Propag.,, Vol. 48, 1274-1276, 2000.
doi:10.1109/8.865232

35. Bresciani, , D., S. Contu, and , "Scattering analysis of dichroic subreflectors," Electromagnetics, Vol. 5, 375-407, 1985.
doi:10.1080/02726348508908157