Vol. 38
Latest Volume
All Volumes
PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-03-08
All-Optical Delay Module Using Cascaded Polymer All-Pass-Filter Ring Resonators
By
Progress In Electromagnetics Research Letters, Vol. 38, 89-100, 2013
Abstract
An APF (All-Pass Filter) delay module in which eight single-ring resonators are serially cascaded is designed and fabricated. The polymer waveguide used for the realization of the APF delay module is a buried structure whose core width and height are 1.5μm. The core and cladding index are 1.51 and 1.378, respectively, which corresponds to the relative index difference of 8%. In order to use a thermo-optic effect of polymer materials, electrodes are evaporated above the ring resonator to provide heating currents. The time delay is measured to be about 50 ps when 2 rings are in resonance, and about 105 ps and 150 ps, respectively, when 4 and 6 rings of APF are in resonance, respectively. When all of 8 rings are in resonance, the delay is measured to be about 200 ps.
Citation
Jaeseong Kim, Yoonyoung Ko, Hyosuk Kim, Hwa-Sung Kim, and Youngchul Chung, "All-Optical Delay Module Using Cascaded Polymer All-Pass-Filter Ring Resonators," Progress In Electromagnetics Research Letters, Vol. 38, 89-100, 2013.
doi:10.2528/PIERL13012501
References

1. Parra, E. and J. R. Lowell, "Towards applications of slow-light technology," Opt. Photon. News, Vol. 18, 41-45, 2007.
doi:10.1364/OPN.18.11.000040

2. Vestergaard Hau, L., S. E. Harris, Z. Dutton, C. H. Behroozi "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature, Vol. 397, 594, 1999.
doi:10.1038/17561

3. Bajcsy, M., A. S. Zibrov, and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature, Vol. 426, 638, 2003.
doi:10.1038/nature02176

4. Okawachi, Y., M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett., Vol. 94, 153902, 2005.
doi:10.1103/PhysRevLett.94.153902

5. Song, K. Y. and K. Hotate, "25 GHz bandwidth Brillouin slow light in optical fibers," Opt. Lett., Vol. 32, 217, 2007.
doi:10.1364/OL.32.000217

6. Camacho, R. M., M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, "Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor," Phys. Rev. Lett., Vol. 98, 153601, 2007.
doi:10.1103/PhysRevLett.98.153601

7. Zuang, L., C. G. H. Roelo?zen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, "Single-chip ring resonator-based 1 x 8 optical beam forming network in CMOS-compatible waveguide technology," IEEE Photon. Technol. Lett., Vol. 19, 1130-1132, 2007.
doi:10.1109/LPT.2007.900313

8. Rasras, M. S., et al. "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett., Vol. 17, 834-836, 2005.
doi:10.1109/LPT.2005.844009

9. Madsen, C. K. and G. Lenz, "Optical all-pass filters for phase response design with applications for dispersion compensation," IEEE Photon. Technol. Lett., Vol. 10, 994-996, 1998.
doi:10.1109/68.681295

10. Khurgin, J. B., "Optical buffers based on slow light in electromagnetically induced transparent media and coupled esonator structures: Comparative analysis," J. Opt. Soc. Am. B, Vol. 22, 1062, 2005.
doi:10.1364/JOSAB.22.001062

11. Ghulinyan, M., M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in one-dimensional optical superlattices," Appl. Phys. Lett., Vol. 88, 241103, 2006.
doi:10.1063/1.2209716

12. Lee, D., T. Lee, J. Park, S. Kim, and Y. Chung, "Widely tunable double-ring-resonator add/drop filter," Korean J. Opt. Photon. (HankookKwanghakHoeji), Vol. 18, 216-220, 2007.
doi:10.3807/HKH.2007.18.3.216

13. Kwon, O., J. Kim, and Y. Chung, "Design and fabrication of variable optical signal delay line based on polymer coupled ring resonators," Korean J. Opt. Photon. (HankookKwanghakHoeji), Vol. 22, 256-261, 2011.
doi:10.3807/KJOP.2011.22.6.256

14. Poon, J. K. S., J. Scheuer, and A. Yariv, "Wavelength-selective reflector based on a circular array of coupled microring resonators," IEEE Photon. Technol. Lett., Vol. 16, 1331-1333, 2004.
doi:10.1109/LPT.2004.826152

15. Poon, J. K. S., J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled-resonator optical waveguides," Opt. Express, Vol. 12, 90-103, 2004.
doi:10.1364/OPEX.12.000090

16. Yariv, A., Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Opt. Lett., Vol. 24, 711-713, 1999.
doi:10.1364/OL.24.000711

17. Morichetti, F., A. Melloni, C. Canavesi, F. Persia, M. Martinelli, and M. Sorel, "Tunable slow-wave optical delay-lines," Slow and Fast Light, MB2, Washington DC, 2006.

18. Poon, J. K. S., L. Zhu, G. A. De Rose, and A. Yariv, "Transmission and group delay of micro ring coupled resonator," Opt. Lett., Vol. 31, 456, 2006.
doi:10.1364/OL.31.000456

19. Morichetti, F., A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, "A reconfigurable architecture for continuously variable optical slow-wave delay lines," Opt. Express, Vol. 15, 17273-17282, 2007.
doi:10.1364/OE.15.017273

20. Melloni, A., F. Morichetti, and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron., Vol. 35, 365-379, 2003.
doi:10.1023/A:1022957319379

21. Reynolds, A. L., U. Peschel, F. Lederer, P. J. Roberts, T. F. Krauss, and P. J. I. De Maagt, "Coupled defects in photonic crystals," IEEE Trans. Microwave Theory Tech., Vol. 49, 1860, 2001.
doi:10.1109/22.954799

22. Xia, F., L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photonics, Vol. 1, 65-71, 2007.
doi:10.1038/nphoton.2006.42