1. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Chapters 2 and 6, Wiley, New York, 2001.
doi:10.1002/9780470937297
2. Chin, K.-S. and C.-K. Lung, "Miniaturized microstrip dual-band bandstop filters using tri-section stepped-impedance resonators," Progress In Electromagnetics Research C, Vol. 10, 37-48, 2009.
doi:10.2528/PIERC09080306
3. Ning, H., J. Wang, Q. Xiong, and L.-F. Mao, "Design of planar dual and triple narrow-band bandstop filters with independently controlled stopbands and improved spurious response," Progress In Electromagnetics Research, Vol. 131, 259-274, 2012.
4. Cheng, D., H.-C. Yin, and H.-X. Zheng, "A compact dual-band bandstop filter with defected microstrip slot," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 10, 1374-1380, 2012.
doi:10.1080/09205071.2012.700262
5. Wang, J., H. Ning, Q. Xiong, M. Li, and L.-F. Mao, "A novel miniaturized dual-band bandstop filter using dual-plane defected structures," Progress In Electromagnetics Research, Vol. 134, 397-417, 2013.
6. Han, S., X.-L. Wang, and Y. Fan, "Analysis and design of multiple-band bandstop filters," Progress In Electromagnetics Research, Vol. 70, 297-306, 2007.
doi:10.2528/PIER07020903
7. Zhang, X.-Y., C.-H. Chan, Q. Xue, and B.-J. Hu, "RF tunable bandstop filters with constant bandwidth based on a doublet configuration," IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, 1257-165, 2012.
doi:10.1109/TIE.2011.2158038
8. Ou, Y.-C. and G. M. Rebeiz, "Lumped-element fully tunable bandstop filters for cognitive radio applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 10, Part 1, 2461-2468, 2011.
doi:10.1109/TMTT.2011.2160965
9. Xiang, Q.-Y., Q.-Y. Feng, and X.-G. Huang, "A novel microstrip bandstop filter and its application to reconfigurable filter," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8-9, 1039-1047, 2012.
doi:10.1080/09205071.2012.710365
10. Wu, Y., Y. Liu, S. Li, and C. Yu, "A simple microstrip bandpass filter with analytical design theory and sharp skirt selectivity," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1253-1263, 2011.
doi:10.1163/156939311795762060
11. Wu, Y., Y. Liu, S. Li, and S. Li, "A novel high-power amplifier using a generalized coupled-line transformer with inherent DC-block function," Progress In Electromagnetics Research, Vol. 119, 171-190, 2011.
doi:10.2528/PIER11050409
12. Cui, D., Y. Liu, Y. Wu, S. Li, and C. Yu, "A compact bandstop filter based on two meandered parallel-coupled lines," Progress In Electromagnetics Research, Vol. 121, 271-279, 2011.
doi:10.2528/PIER11061902
13. Mandal, M. K., K. Divyabramham, and V. K. Velidi, "Compact wideband bandstop filter with five transmission zeros," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 1, 4-6, 2012.
doi:10.1109/LMWC.2011.2173928
14. Qian, K. W. and X. H. Tang, "Compact bandstop filter using coupled-line section," Electronics Letters, Vol. 47, No. 8, 505-506, 2011.
doi:10.1049/el.2011.0107
15. Xiang, Q.-Y., Q.-Y. Feng, and X.-G. Huang, "Bandstop flter based on complementary split ring resonators defected microstrip structure," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1895-1908, 2011.
doi:10.1163/156939311797453999
16. Tang, W. and J.-S. Hong, "Coupled stepped-impedance-resonator bandstop filter," IET Microwaves, Antennas & Propagation, Vol. 4, No. 9, 1283-1289, 2010.
doi:10.1049/iet-map.2009.0419
17. Wu, Y. and Y. Liu, "A coupled-line band-stop filter with three-section transmission-line stubs and wide upper pass-band performance," Progress In Electromagnetics Research, Vol. 119, 407-421, 2011.
doi:10.2528/PIER11072003