1. Dekkers, C., "Carbon nanotubes as molecular quantum wires," Physics Today, Vol. 52, 22-30, 1999.
doi:10.1063/1.882658
2. Ebbesen, T. W., H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, "Electrical conductivity of individual carbon nanotubes," Nature, Vol. 382, 54-56, 1996.
doi:10.1038/382054a0
3. Farajian, A. A., B. I. Yakobson, H. Mizuseki, and Y. Kawazoe, "Electronic transport through bent carbon nanotubes: Nanoelectromechanical sensors and switches," Phys. Rev. B, Vol. 67, 205423, 2003.
doi:10.1103/PhysRevB.67.205423
4. Appenzeller, J., J. Knoch, V. Derycke, R. Martel, S. Wind, and P. Avouris, "Field-modulated carrier transport in carbon nanotube transistors," Phys. Rev. Lett., Vol. 89, 126801, 2002.
doi:10.1103/PhysRevLett.89.126801
5. Li, H.-C., S.-Y. Lu, S.-H. Syue, W.-K. Hsu, and S.-C. Chang, "Conductivity enhancement of carbon nanotube composites by electrolyte addition," Appl. Phys. Lett., Vol. 93, 033104, 2008.
doi:10.1063/1.2963475
6. Baumgartner, G., M. Carrard, L. Zuppiroli, W. Bacsa, W. A. de Heer, and L. Forro, "Hall effect and magnetoresistance of carbon nanotube films," Phys. Rev. B, Vol. 55, 6704-6707, 1997.
doi:10.1103/PhysRevB.55.6704
7. Lin, Y.-H., Y.-C. Lai, C.-T. Hsu, C.-J. Hu, and W.-K. Hsu, "Why aggregated carbon nanotubes exhibit low quantum efficiency," Physical Chemistry Chemical Physics, Vol. 13, 7149-7153, 2011.
doi:10.1039/c0cp02691c
8. Lin, Y.-H., Y.-C. Lai, C.-L. Lu, and W.-K. Hsu, "Excellent cushioning by polymer-concreted arrays of aligned carbon nanotubes," J. Mater. Chem., Vol. 21, 12485, 2011.
doi:10.1039/c1jm12200b
9. Ding, J.-J., C.-L. Lu, and W.-K. Hsu, "Capacitive carbon nanotube networks in polymer composites," Appl. Phys. Lett., Vol. 99, 033111, 2011.
doi:10.1063/1.3615052
10. Tersoff, J. and R. S. Ruoff, "Structural properties of a carbon-nanotube crystal," Phys. Rev. Lett., Vol. 73, 676, 1994.
doi:10.1103/PhysRevLett.73.676
11. Syue, S.-H., C.-T. Hsu, U.-S. Chen, H.-J. Chen, W.-K. Hsu, and H.-C. Shih, "Increased strength of boron-doped carbon nanotube bundles produced by applying an electric field along their length," Carbon, Vol. 47, 1239, 2009.
doi:10.1016/j.carbon.2008.12.052
12. Monteverde, M. and M. Nunez-Regueiro, "Pressure control of conducting channels in single-wall carbon nanotube networks," Phys. Rev. Lett., Vol. 94, 235501, 2005.
doi:10.1103/PhysRevLett.94.235501
13. Fischer, J. E., H. Dai, A. Thess, R. Lee, N. M. Hanjani, D. L. Dehaas, and R. E. Smalley, "Metallic resistivity in crystalline ropes of single-wall carbon nanotubes," Phys. Rev. B, Vol. 55, 4921-4924, 1997.
doi:10.1103/PhysRevB.55.R4921
14. Chin, W., C.-L. Lu, and W.-K. Hsu, "A radiofrequency induced intra-band transition in carbon nanotubes," Carbon, Vol. 49, 2648-2652, 2011.
doi:10.1016/j.carbon.2011.02.050
15. Collins, P. G., K. Bradley, M. Ishigami, and A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes," Science, Vol. 287, 1801-1805, 2000.
doi:10.1126/science.287.5459.1801
16. Ramanayaka, A. N. and R. G. Mani, "Microwave-induced electron heating in the regime of radiation-induced magnetoresistance oscillations," Phys. Rev. B, Vol. 83, 165303, 2011.
doi:10.1103/PhysRevB.83.165303
17. Li, Y.-F., C.-I. Hung, H.-F. Kuo, S.-H. Syu, W.-K. Hsu, S.-L. Kuo, and S.-C. Huang, "Electromagnetic modulation of carbon nanotube wetting," J. Mater. Chem., Vol. 19, 7694-7697, 2009.
doi:10.1039/b910793b
18. Girifalco, L. A., M. Hodak, and R. S. Lee, "Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential," Phys. Rev. B, Vol. 62, 13104-13110, 2000.
doi:10.1103/PhysRevB.62.13104
19. Syue, S.-H., S.-Y. Lu, W.-K. Hsu, and H.-C. Shih, "Internanotube friction," Appl. Phys. Lett., Vol. 89, 163115, 2006.
doi:10.1063/1.2369721
20. Cheng, T.-W. and W.-K. Hsu, "Winding of single-walled carbon nanotube ropes: An effective load transfer," Appl. Phys. Lett., Vol. 90, 123102, 2007.
doi:10.1063/1.2714282