Vol. 38
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-03-06
A Novel via Less Resonant Type Antenna Based on Composite Right/Left-Handed Transmission Line (CRLH-TL) Unit Cell with Defected Ground Structure
By
Progress In Electromagnetics Research Letters, Vol. 38, 55-64, 2013
Abstract
In this paper, a novel via-less balanced composite right/left handed transmission line (CRLH-TL) unit cell using defected ground structure (DGS) is presented, and a resonant type antenna based on the proposed CRLH-TL unit cell is designed. Equivalent circuit model is developed to analyze the CRLH-TL unit cell antenna. The resonant frequency is studied, and the resonant frequency tuned by adjusting the dimension of the antenna patch is simulated. The antenna simulated and measured results are presented. The measured central frequency of the proposed antenna is 5.55 GHz. A peak gain of 6.7 dBi with an efficiency of 75.6% is obtained at the central frequency.
Citation
Xue Li, Quanyuan Feng, and Qian-Yin Xiang, "A Novel via Less Resonant Type Antenna Based on Composite Right/Left-Handed Transmission Line (CRLH-TL) Unit Cell with Defected Ground Structure," Progress In Electromagnetics Research Letters, Vol. 38, 55-64, 2013.
doi:10.2528/PIERL13011506
References

1. Agarwal, V. K., A. K. Shaw, M. K. Das, et al. "A novel compact dual frequency microstrip antenna," Procedia Technology, Vol. 4, 427-430, 2012.
doi:10.1016/j.protcy.2012.05.067

2. Cao, W.-Q., B.-N. Zhang, A. J. Liu, D.-S. Guo, T.-B. Yu, and Y. Wei, "A dual-band microstrip antenna with omnidirectional circularly polarized and unidirectional linearly polarized characteristics based on metamaterial structure," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 274-283, 2012.
doi:10.1163/156939312800030811

3. Yoo, S. and S. Kahng, "CRLH ZOR antenna of a circularCRLH ZOR antenna of a circular microstrip patch capacitively coupled to a circular shorted ring," Progress In Electromagnetics Research C, Vol. 25, 15-26, 2012.
doi:10.2528/PIERC11072803

4. Shu, P. and Q. Feng, "Compact tri-band monopole antenna with a parasitic E-shaped strip for WLAN/Wimax applications," Progress In Electromagnetics Research C, Vol. 32, 53-63, 2012.

5. Hasar, U. C., J. J. Barroso, M. Ertugrul, C. Sabah, and B. Cavusoglu, "Application of a useful uncertainty analysis as a metric tool for assessing the performance of electromagnetic properties retrieval methods of bianisotropic metamaterials," Progress In Electromagnetics Research, Vol. 128, 365-380, 2012.

6. Liu, X., S. N. Burokur, A. de Lustrac, G. Sabanowski, and G. P. Piau, "Compact base station antennas using metamaterials," Progress In Electromagnetics Research C, Vol. 33, 43-53, 2012.

7. Smith, D., S. Schultz, P. Marko·s, et al. "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, No. 19, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

8. Ahn, D., J. S. Park, C. S. Kim, et al. "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 1, 86-93, 2001.
doi:10.1109/22.899965

9. Xiao, J. K. and Y. F. Zhu, "New U-shaped DGS bandstop filters," Progress In Electromagnetics Research C, Vol. 25, 179-191, 2012.
doi:10.2528/PIERC11091805

10. Zarifi, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
doi:10.2528/PIER11110506

11. Moghadas, H. and A. Tavakoli, "A semi-numerical design algorithm for defected ground structure in microstrip antenna arrays," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, 2012.
doi:10.1109/APS.2012.6347990

12. Chang, K., T. Jiang, L. Ran, et al. "Investigation of microwave negative refractive index (NRI) transmission lines incorporating tunnel diodes," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 671-674, 2012.
doi:10.1109/LAWP.2012.2203330

13. Zhang, J., S. Cheung, and T. Yuk, "Compact composite right/left-handed transmission line unit cell for the design of true-time-delay lines," lines," IET Microwaves, Antennas & Propagation, Vol. 6, No. 8, 893-898, 2012.
doi:10.1049/iet-map.2011.0579

14. Gong, J. Q., C. H. Liang, and B. Wu, "Compact dual-band 90o couplers with customizable power division ratios utilizing SCRLH transmission lines," Progress In Electromagnetics Research C, Vol. 36, 29-40, 2013.

15. Su, P., X. Q. Lin, R. Zhang, et al. "An improved CRLH wide-band ¯lter using CSRRS with high stop band rejection," Progress In Electromagnetics Research Letters, Vol. 32, 119-127, 2012.

16. Lin, X., P. Su, Y. Fan, and Z. B. Zhu, "Improved CRLH-TL with arbitrary characteristic impedance and its application in hybrid ring design," Progress In Electromagnetics Research, Vol. 124, 249-263, 2012.
doi:10.2528/PIER11112303

17. Kang, W., G. Yang, H. Wang, C. Miao, and W. Wu, "Miniaturized dual-mode composite-right/left-handed line resonator filter with wide harmonic suppression," Progress In Electromagnetics Research Letters, Vol. 28, 73-81, 2012.
doi:10.2528/PIERL11092708

18. Liu, S. X. and Q. Feng, "Compact multi-band loop antennas using CPW-based CRLH quarter-wave type resonators," Progress In Electromagnetics Research C, Vol. 28, 47-60, 2012.
doi:10.2528/PIERC12012201

19. Liu, C. Y., Q. X. Chu, and J. Q. Huang, "A planar D-CRLH and its application to bandstop filter and leaky-wave antenna," Progress In Electromagnetics Research Letters, Vol. 19, 93-102, 2010.

20. Lim, S., C. Caloz, and T. Itoh, "A reflectodirective system using a composite right/left-handed (CRLH) leaky-wave antenna and heterodyne mixing," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 4, 183-185, 2004.
doi:10.1109/LMWC.2004.827107

21. Mok, S., S. Kahng, and Y. Kim, "A wide band metamaterial ZOR antenna of a patch coupled to a ring mushroom," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 13, 1667-1674, 2012.
doi:10.1080/09205071.2012.708965

22. Chen, P. W. and F. C. Chen, "Asymmetric coplanar waveguide (ACPW) zeroth-order resonant (ZOR) antenna with high efficiency and bandwidth enhancement," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 527-530, 2012.
doi:10.1109/LAWP.2012.2198191

23. Singh, G. K., R. K. Chaudhary, and K. V. Srivastava, "A compact zeroth order resonating antenna using complementary split ring resonator with mushroom type of structure," Progress In Electromagnetics Research Letters, Vol. 28, 139-148, 2012.
doi:10.2528/PIERL11110709

24. Geng, L., G.-M. Wang, C.-X. Zhang, and Y.-W. Wang, "Fractal-based composite right/left-handed transmission line and its applications in miniaturized negative-order resonant antennas," Progress In Electromagnetics Research Letters, Vol. 36, 155-162, 2013.

25. Cao, W.-Q., A. J. Liu, B.-N. Zhang, T.-B. Yu, D.-S. Guo, Y. Wei, and Z.-P. Qian, "Multi-band multi-mode microstrip circular patch antenna loaded with metamaterial structures," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 7, 923-931, 2012.
doi:10.1080/09205071.2012.710377

26. Ibrahim, A. A., A. M. E. Safwat, and H. El-Hennawy, "Triple-band microstrip-fed monopole antenna loaded with CRLH unit cell," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1547-1550, 2011.
doi:10.1109/LAWP.2011.2181813

27. Caloz, C., T. Itoh, and A. Rennings, "CRLH metamaterial leaky-wave and resonant antennas," IEEE Antennas and Propagation Magazine, Vol. 50, No. 5, 25-39, 2008.
doi:10.1109/MAP.2008.4674709

28. Ibrahim, A. and A. Safwat, "Microstrip-fed monopole antennas loaded with CRLH unit cells," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4027-4036, 2012.
doi:10.1109/TAP.2012.2207080

29. Raslan, A., A. Ibrahim, and A. Safwat, "Resonant type antennas loaded with CRLH unit cell," IEEE Antennas and Wireless Propagation Letters, Vol. PP, No. 99, Early Access Article, 2012.

30. Upadhyay, D. K. and S. Pal, "An improved full scanning antenna using left-handed materials," Microwave and Optical Technology Letters, Vol. 55, 261-265, 2013.
doi:10.1002/mop.27333

31. Ryu, Y. H., et al. "Multiband antenna using +1, -1, and 0 resonant mode of DGS dual composite right/left handed transmission line," Microwave and Optical Technology Letters, Vol. 51, 2485-2488, 2009.
doi:10.1002/mop.24649

32. Ryu, Y.-H., et al. "DGS dual composite right/lefthanded transmission line," IEEE Microwave and Wireless Components Letters, Vol. 18, 434-436, 2008.

33. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley-IEEE Press, 2005.
doi:10.1002/0471754323