Vol. 30
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-03-19
A Dual-Band Terahertz Metamaterial Based on a Hybrid 'h '-Shaped Cell
By
Progress In Electromagnetics Research M, Vol. 30, 39-50, 2013
Abstract
We present a dualband terahertz metamaterial based on a hybrid 'H'-shaped cell of different sizes. The proposed 'H'-shaped metamaterial (HSM) structure, fabricated on a quartz (SiO2) substrate, exhibits two intense electrical resonances at ~0.95 THz and ~1.26 THz, respectively. Extracted effective permittivity show negative values in 0.95-1.01 THz and 1.26-1.42 THz bands. Measured results from the terahertz time-domain spectroscopy (THz-TDS) experiments show good agreement with the simulated results.
Citation
Wanyi Guo, Lianxing He, Hao Sun, Hongwei Zhao, Biao Li, and Xiao-Wei Sun, "A Dual-Band Terahertz Metamaterial Based on a Hybrid 'h '-Shaped Cell," Progress In Electromagnetics Research M, Vol. 30, 39-50, 2013.
doi:10.2528/PIERM13011403
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

3. Yen, T. J., W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, No. 5663, 1494-1496, 2004.
doi:10.1126/science.1094025

4. Padilla, W. J., A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averott, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett., Vol. 96, 107401(1)-107401(4), 2006.

5. Tuniz, A., B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, "Drawn metamaterials with plasmonic response at terahertz frequencies," App. Phys. Lett., Vol. 96, 191101(1)-191101(3), 2010.

6. Chen, H.-T., W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nature Photonics, Vol. 3, 148-151, 2009.
doi:10.1038/nphoton.2009.3

6. Cheng, Y., H. Yang, Z. Cheng, and N. Wu, "Perfect metamaterial absorber based on a split-ring-cross resonator," J. Appl. Phys. A, Vol. 102, 99-103, 2010.

8. Choi, M., S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y. Hee, N. Park, and B. Min, "A terhaertz metamaterial with unnaturally high refractive index," Nature, Vol. 470, No. 09776, 369-373, 2011.
doi:10.1038/nature09776

9. Chen, H.-S., L.-X. Ran, J. Tao, F. Huang, X.-M. Zhang, and K.-S. Chen, "Metamaterial exhibiting left-handed properties over multiple frequency bands," J. Appl. Phys., Vol. 96, 5338, 2004.
doi:10.1063/1.1803942

10. Sydoruk, O., O. Zhuromskyy, E. Shamonina, and L. Solymar, "Phono-like dispersion curves of magnetoinductive waves," Appl. Phys. Lett., Vol. 87, 072501, 2005.
doi:10.1063/1.2011789

11. Gorkunov, M. V., L. V. Shadrivov, and Y. S. Kivshar, "Enhanced parametric processes in binary metamaterials," Appl. Phys. Lett., Vol. 88, 071912, 2009.

12. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," App. Phys. Lett., Vol. 95, 241111(1)-241111(3), 2009.

13. Yu, Y., C. Bingham, T. Tyler, S. Palit, R. Hand, W. J. Padila, N. M. Jokerst, and S. A. Cummer, "A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators," App. Phys. Lett., Vol. 93, No. 19, 19110(1)-19110(3), 2008.

14. Yu, Y., C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, "Dual-band planar electric metamaterial in the terahertz regime," Opt. Express, Vol. 16, No. 13, 9746-9752, 2008.
doi:10.1364/OE.16.009746

15. Ekmekci, E., K. Topalli, T. Akin, and G. Turhan-Sayan, "A tunable multi-band metamaterial design using micro-split SRR structures," Opt. Express, Vol. 17, No. 18, 16406-16058, 2009.
doi:10.1364/OE.17.016046

16. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Appl. Phys., Vol. 43, 225102-225106, 2010.

17. Ma, Y., Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, "A terahertz polarization insensitive dual band metamaterial absorber," Opt. Lett., Vol. 36, No. 6, 945-947, 2011.
doi:10.1364/OL.36.000945

18. Lee, H.-M. and H.-S. Lee, "A dualband metamaterial absorber based with resonant-magnetic structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012.

19. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617(1)-036617(11), 2005.
doi:10.1103/PhysRevE.71.061902

20. Han, N. R., Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, "Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates," Opt. Express,, Vol. 19, No. 8, 6991-6998, 2011.
doi:10.1364/OE.19.006990

21. Guo, W., L. He, B. Li, T. Teng, and X.-W. Sun, "A wideband and dual-resonant terahertz metamaterial using a modified SRR structure," Progress In Electromagnetics Research, Vol. 134, 289-299, 2013.