Vol. 137
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-21
Measurement Evaluation of the Tgn Radio Channel Models Usefulness in Predicting WLAN Performance
By
Progress In Electromagnetics Research, Vol. 137, 311-333, 2013
Abstract
The purpose of this paper is to discuss the applicability of the TGn radio channel models in estimating the performance of WLAN transmission. The specificity of the indoor radiowave propagation is first discussed, then TGn models are introduced together with a deterministic propagation model created by the authors for predicting the radio channel higher-order parameters. Intensive WLAN measurements have been carried out in two representative propagation environments and compared to theoretical predictions obtained in four configurations: beginning with the original TGN channel models, then enhancing them by including deterministically simulated pathloss and impulse responses and eventually by generating the channel impulse response on a purely random basis. The obtained results should indicate how accurately the general TGn channel models match measurements in real environments and how they compare to proposed successive modifications.
Citation
Kamil Staniec, and Michal Kowal, "Measurement Evaluation of the Tgn Radio Channel Models Usefulness in Predicting WLAN Performance," Progress In Electromagnetics Research, Vol. 137, 311-333, 2013.
doi:10.2528/PIER13011006
References

1. Chu, J.-H., K.-T. Feng, and C.-C. Liao, "Analysis and determination of cooperative MAC strategies from throughput perspectives," Wireless Networks, Dec. 2012, DOI 10.1007/s11276-012-0529-x.

2. Yu, X., L. Wang, H.-G. Wang, X. Wu, and Y.-H. Shang, "A novel multiport matching method for maximum capacity of an indoor MIMO system," Progress In Electromagnetics Research, Vol. 130, 67-84, 2012.

3. Pauliukas, D. and V. Vosylius, "Research of real time traffic transmission in 802.11 WLANs," Elektronika ir Elektrotechnika, Vol. 7, No. 95, 111-114, 2009.

4. Kajackas, A. and L. Pavilanskas, "Analysis of the technological expenditures of common WLAN models," Elektronika ir Elektrotechnika, Vol. 8, No. 72, 19-24, 2006.

5. Wei, K., Z. Zhang, and Z. Feng, "Design of a dualband omnidirectional planar microstrip antenna array," Progress In Electromagnetics Research, Vol. 126, 101-120, 2012.
doi:10.2528/PIER11112101

6. Deruyck, M., W. Vereecken, W. Joseph, B. Lannoo, M. Pickavet, and L. Martens, "Reducing the power consumption in wireless access networks: Overview and recommendations," Progress In Electromagnetics Research, Vol. 132, 255-274, 2012.

7. Alsehaili, M., "Angle and time of arrival statistics of a three dimensional geometrical scattering channel model for indoor and outdoor propagation environments," Progress In Electromagnetics Research, Vol. 109, 191-209, 2010.
doi:10.2528/PIER10081106

8. Phaebua, K., C. Phongcharoenpanich, M. Krairiksh, and T. Lertwiriyaprapa, "Path-loss prediction of radio wave propagation in an orchard by using modified UTD method," Progress In Electromagnetics Research, Vol. 128, 347-363, 2012.

9. Ndzi, D. L., M. A. M. Arif, A. Y. M. Shakaff, M. N. Ahmad, A. Harun, L. M. Kamarudin, A. Zakaria, M. F. Ramli, and M. S. Razalli, "Signal propagation analysis for low data rate wireless sensor network applications in sport grounds and on roads," Progress In Electromagnetics Research, Vol. 125, 1-19, 2012.
doi:10.2528/PIER11111406

10. Yu, X., L. Wang, H.-G. Wang, X. Wu, and Y.-H. Shang, "A novel multiport matching method for maximum capacity of an indoor MIMO system," Progress In Electromagnetics Research, Vol. 130, 67-84, 2012.

11. Chen, Z. and Y.-P. Zhang, "Effects of antennas and propagation channels on synchronization performance of a pulse-based ultra-wideband radio system," Progress In Electromagnetics Research, Vol. 115, 95-112, 2011.

12. Ndzi, D. L., K. Stuart, S. Toautachone, B. Vuksanovic, and D. Sanders, "Wideband sounder for dynamic and static wireless channel characterisation: Urban picocell channel model," Progress In Electromagnetics Research, Vol. 113, 285-312, 2011.

13. ITU, ITU-R P.1145, "Propagation data for the terrestrial land mobile service in the VHF and UHF bands,", 1995.

14. ITU, ITU-R P.1407, "Multipath propagation and parameterization of its characteristics,", 2009.

15. Rappaport, T. S., Wireless Communications. Principles and Practice, 2nd Edition, Prentice Hall, 2002.

16. Hashemi, H., "The indoor radio propagation channel," IEEE Proceedings, Vol. 81, No. 7, 943-968, Jul. 1993.
doi:10.1109/5.231342

17. Staniec, K., "The indoor radiowave propagation modeling in ISM bands for broadband wireless systems,", Ph.D. Dissertation, Wroclaw University of Technology, Wroclaw, Poland, 2006.

18. Pomianek, A. J., K. Staniec, and Z. Joskiewicz, "Practical remarks on measurement and simulation methods to emulate the wireless channel in the reverberation chamber," Progress In Electromagnetics Research, Vol. 105, 49-69, 2010.
doi:10.2528/PIER10022605

19. Staniec, K. and A. J. Pomianek, "On simulating the radio signal propagation in the reverberation chamber with the ray launching method," Progress In Electromagnetics Research B, Vol. 27, 83-99, 2011.

20. Reza, A. W., M. S. Sarker, and K. Dimyati, "A novel integrated mathematical approach of ray-tracing and genetic algorithm for optimizing indoor wireless coverage," Progress In Electromagnetics Research, Vol. 110, 147-162, 2010.
doi:10.2528/PIER10091701

21. Liu, Z.-Y. and L.-X. Guo, "A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments," Progress In Electromagnetics Research, Vol. 118, 397-414, 2011.
doi:10.2528/PIER11041602

22. Sarker, M. S., A. W. Reza, and K. Dimyati, "A novel ray-tracing technique for indoor radio signal prediction," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1179-1190, 2011.
doi:10.1163/156939311795762222

23. Kowal, M., "The performance of the MIMO-OFDM radio interface in presence of interferences,", Ph.D. dissertation, Wroclaw University of Technology, Wroclaw, Poland, 2011.

24. Kowal, M., S. Kubal, P. Piotrowski, and R. Zielinki, "A simulation model of the radio frequency MIMO-OFDM system," International Journal of Electronics and Telecommunications, Vol. 57, No. 3, 323-328, 2011.
doi:10.2478/v10177-011-0043-6

25. Erceg, V., L. Schumacher, and P. Kyritsi, "TGn channel models,", IEEE 802.11-03/940r4, May 10, 2004.

26. Kara, A., "Human body shadowing variability in short range indoor radio links at 3-11 GHz," Int. Journal of Electronics, Vol. 96, 205-211, 2009.
doi:10.1080/00207210802524302

27. Cotton, S. L., et al., "An experimental study on the impact of human body shadowing in off-body communications channels at 2.45 GHz," Proc. 5th European Conference on Antennas and Propagation (EUCAP), 3133-3137, 2011.

28. Cheffena, M., "Physical-statistical channel model for signal effect by moving human bodies," EURASIP Journal on Wireless Communications and Networking, Vol. 2012, 77, 2012.
doi:10.1186/1687-1499-2012-77

29. Kara, A. and E. Yazgan, "Modelling of shadowing loss for huge non-polygonal structures in urban radio propagation," Progress In Electromagnetic Research B, Vol. 6, 123-134, 2008.
doi:10.2528/PIERB08031209

30. Li, Q., M. Ho, V. Erceg, A. Janganntham, and N. Tal, "802.11n channel model validation,", IEEE 802.11-03/894r1, Nov. 2003.

31. Saleh, A. A. M. and R. A. Valenzuela, "A statistical model for indoor multipath propagation," IEEE Journal of Selected Areas in Communications, Vol. 5, 128-137, 1987.
doi:10.1109/JSAC.1987.1146527

32. Medbo, J. and P. Schramm, "Channel models for HIPERLAN/2,", ETSI/BRAN Document No. 3ERI085B, 1998.

33. ITU, ITU-R F.1191-3, "Necessary and occupied bandwidths and unwanted emissions of digital fixed service systems,", May 2011.