Vol. 139
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-04-23
Design and Time-Domain Analysis of a High-Voltage Impulsed Test-Bed for Near-Field Thermoacoustic Tomography
By
Progress In Electromagnetics Research, Vol. 139, 105-119, 2013
Abstract
We present numerical time-domain modeling and validation framework for impulse-driven near-field thermoacoustics imaging. It has been recently demonstrated that this new imaging approach comprises a viable alternative for high performance and low-cost imaging using the thermoacoustic phenomenon. Placement of the imaged object in a close vicinity (near field) of an antenna elements along with generation of ultrashort (nanosecond) duration high-voltage excitation impulses further provide high imaging resolution and ensure that sufficient level of electromagnetic energy reaches the object under investigation. In order to analyze the measured results and also provide a design and optimization framework, this work presents a full-wave computational electromagnetic framework which couples the near-field electromagnetic field to the acoustic signal generation. The numerical method comprises a finite integral time domain method (FITD) based on the industry standard CST 2010 software package. The results can be further utilized for normalization and quantification of the generated images.
Citation
Amir Hajiaboli, Stephan Kellnberger, Vasilis Ntziachristos, and Daniel Razansky, "Design and Time-Domain Analysis of a High-Voltage Impulsed Test-Bed for Near-Field Thermoacoustic Tomography," Progress In Electromagnetics Research, Vol. 139, 105-119, 2013.
doi:10.2528/PIER13010606
References

1. Kruger, R. A., K. D. Miller, H. E. Reynolds, W. L. Kiser, Jr., D. R. Reinecke, and G. A. Kruger, "Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study," Radiology, Vol. 216, 279-283, Jul. 2000.

2. Robert, P., A. Kruger, M. Kathy, D. Miller, M. Handel, E. Reynolds, J. William, L. Kiser, M. Daniel, R. Reinecke, and G. A. Kruger, "Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study," Radiology, Vol. 216, 279-293, 2000.

3. Kruger, R. A. and W. L. Kiser, "Thermoacoustic CT of the breast: Pilot study observations," Proc. SPIE, Vol. 4256, 1-5, 2001.
doi:10.1117/12.429292

4. Wang, L. V., "Prospects of photoacoustic tomography," Medical Physics, Vol. 35, 5758-5767, Dec. 2008.
doi:10.1118/1.3013698

5. Patch, S. K. and O. Scherzer, "Photo- and thermo-acoustic imaging," Inverse Problems, Vol. 23, S01-S10, 2007.
doi:10.1088/0266-5611/23/6/S01

6. Wang, L. V., "Tutorial on photoacoustic microscopy and computed tomography," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 14, 171-179, Jan.-Feb. 2008.
doi:10.1109/JSTQE.2007.913398

7. Razansky, D., M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, "Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo," Nature Photonics, Vol. 3, 412-417, Jul. 2009.
doi:10.1038/nphoton.2009.98

8. Ntziachristos, V. and D. Razansky, "Molecular imaging by means of multispectral optoacoustic tomography (MSOT)," Chem. Rev., Vol. 110, 2783-2794, May 2012.
doi:10.1021/cr9002566

9. Jin, X., C. H. Li, and L. V. Wang, "Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography," Medical Physics, Vol. 35, 3205-3214, Jul. 2008.
doi:10.1118/1.2938731

10. Feng, D., Y. Xu, G. Ku, and L. V. Wang, "Microwave-induced thermoacoustic tomography: Reconstruction by synthetic aperture," Medical Physics, Vol. 28, 2001.
doi:10.1118/1.1418015

11. Wang, L. V., X. Zhao, H. Sun, and G. Ku, "Microwave-induced acoustic imaging of biological tissues," Review of Scientific Instruments, Vol. 70, 3744-3748, 1999.
doi:10.1063/1.1149986

12. Kruger, R. A., W. L. Kiser, K. D. Miller, and H. E. Reynolds, "Thermoacoustic CT: Imaging principles," Proc. SPIE on Biomedical Optoacoustics, 150-159, 2000.
doi:10.1117/12.386316

13. Razansky, D., S. Kellnberger, and V. Ntziachristos, "Near-field radiofrequency thermoacoustic tomography with impulse excitation," Medical Physics, Vol. 37, 4602-4607, Sep. 2010.
doi:10.1118/1.3467756

14. Kellnberger, S., A. Hajiaboli, D. Razansky, and V. Ntziachristos, "Near-field thermoacoustic tomography of small animals," Physics in Medicine and Biology, Vol. 56, 3433, 2011.
doi:10.1088/0031-9155/56/11/016

15. Fallon, D., L. Yan, G. W. Hanson, and S. K. Patch, "RF testbed for thermoacoustic tomography," Rev. Sci. Instrum., Vol. 80, 064301, Jun. 2009.
doi:10.1063/1.3133802

16. Mashal, A., J. H. Booske, and S. C. Hagness, "Toward contrast-enhanced microwave-induced thermoacoustic imaging of breast cancer: An experimental study of the effects of microbubbles on simple thermoacoustic targets," Phys. Med. Biol., Vol. 54, 641-650, Feb. 7, 2009.
doi:10.1088/0031-9155/54/3/011

17. Zeng, X. and G. Wang, "Numerical study of microwave-induced thermoacoustic effect for early breast cancer detection," IEEE Antennas and Propagation Society International Symposium, 2005.

18. Yan, J., C. Tao, and S. Wu, "Energy transform and initial acoustic pressure distribution in microwave-induced thermoacoustic tomography," Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005.

19. Jung, M., T. H. G. G. Weise, U. Braunsberger, and F. Sabath, "High power compact UWB systems," International Conference on Pulsed Power Applications, Mar. 29-30, 2001.

20. Xu, Y. and L. V. Wang, "Rhesus monkey brain imaging through intact skull with thermoacoustic tomography," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, Vol. 53, 542-548, Mar. 2006.
doi:10.1109/TUFFC.2006.1610562

21. Munteanu, I. and T. Weiland, "RF & microwave simulation with the finite integration technique - From component to system design," Scientific Computing in Electrical Engineering, 247-260, 2007.
doi:10.1007/978-3-540-71980-9_26

22. Marklein, R., "The finite integration technique as a general tool to compute acoustic, electromagnetic, elastodynamic, and coupled wave fields," Review of Radio Science, 201-244, IEEE Press, Piscataway, 2002.

23. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Edition, Artech House, 2007.

24. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues. 3. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, 2271-2293, Nov. 1996.
doi:10.1088/0031-9155/41/11/003