1. Kruger, R. A., K. D. Miller, H. E. Reynolds, W. L. Kiser, Jr., D. R. Reinecke, and G. A. Kruger, "Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study," Radiology, Vol. 216, 279-283, Jul. 2000.
2. Robert, P., A. Kruger, M. Kathy, D. Miller, M. Handel, E. Reynolds, J. William, L. Kiser, M. Daniel, R. Reinecke, and G. A. Kruger, "Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study," Radiology, Vol. 216, 279-293, 2000.
3. Kruger, R. A. and W. L. Kiser, "Thermoacoustic CT of the breast: Pilot study observations," Proc. SPIE, Vol. 4256, 1-5, 2001.
doi:10.1117/12.429292
4. Wang, L. V., "Prospects of photoacoustic tomography," Medical Physics, Vol. 35, 5758-5767, Dec. 2008.
doi:10.1118/1.3013698
5. Patch, S. K. and O. Scherzer, "Photo- and thermo-acoustic imaging," Inverse Problems, Vol. 23, S01-S10, 2007.
doi:10.1088/0266-5611/23/6/S01
6. Wang, L. V., "Tutorial on photoacoustic microscopy and computed tomography," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 14, 171-179, Jan.-Feb. 2008.
doi:10.1109/JSTQE.2007.913398
7. Razansky, D., M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, "Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo," Nature Photonics, Vol. 3, 412-417, Jul. 2009.
doi:10.1038/nphoton.2009.98
8. Ntziachristos, V. and D. Razansky, "Molecular imaging by means of multispectral optoacoustic tomography (MSOT)," Chem. Rev., Vol. 110, 2783-2794, May 2012.
doi:10.1021/cr9002566
9. Jin, X., C. H. Li, and L. V. Wang, "Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography," Medical Physics, Vol. 35, 3205-3214, Jul. 2008.
doi:10.1118/1.2938731
10. Feng, D., Y. Xu, G. Ku, and L. V. Wang, "Microwave-induced thermoacoustic tomography: Reconstruction by synthetic aperture," Medical Physics, Vol. 28, 2001.
doi:10.1118/1.1418015
11. Wang, L. V., X. Zhao, H. Sun, and G. Ku, "Microwave-induced acoustic imaging of biological tissues," Review of Scientific Instruments, Vol. 70, 3744-3748, 1999.
doi:10.1063/1.1149986
12. Kruger, R. A., W. L. Kiser, K. D. Miller, and H. E. Reynolds, "Thermoacoustic CT: Imaging principles," Proc. SPIE on Biomedical Optoacoustics, 150-159, 2000.
doi:10.1117/12.386316
13. Razansky, D., S. Kellnberger, and V. Ntziachristos, "Near-field radiofrequency thermoacoustic tomography with impulse excitation," Medical Physics, Vol. 37, 4602-4607, Sep. 2010.
doi:10.1118/1.3467756
14. Kellnberger, S., A. Hajiaboli, D. Razansky, and V. Ntziachristos, "Near-field thermoacoustic tomography of small animals," Physics in Medicine and Biology, Vol. 56, 3433, 2011.
doi:10.1088/0031-9155/56/11/016
15. Fallon, D., L. Yan, G. W. Hanson, and S. K. Patch, "RF testbed for thermoacoustic tomography," Rev. Sci. Instrum., Vol. 80, 064301, Jun. 2009.
doi:10.1063/1.3133802
16. Mashal, A., J. H. Booske, and S. C. Hagness, "Toward contrast-enhanced microwave-induced thermoacoustic imaging of breast cancer: An experimental study of the effects of microbubbles on simple thermoacoustic targets," Phys. Med. Biol., Vol. 54, 641-650, Feb. 7, 2009.
doi:10.1088/0031-9155/54/3/011
17. Zeng, X. and G. Wang, "Numerical study of microwave-induced thermoacoustic effect for early breast cancer detection," IEEE Antennas and Propagation Society International Symposium, 2005.
18. Yan, J., C. Tao, and S. Wu, "Energy transform and initial acoustic pressure distribution in microwave-induced thermoacoustic tomography," Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005.
19. Jung, M., T. H. G. G. Weise, U. Braunsberger, and F. Sabath, "High power compact UWB systems," International Conference on Pulsed Power Applications, Mar. 29-30, 2001.
20. Xu, Y. and L. V. Wang, "Rhesus monkey brain imaging through intact skull with thermoacoustic tomography," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, Vol. 53, 542-548, Mar. 2006.
doi:10.1109/TUFFC.2006.1610562
21. Munteanu, I. and T. Weiland, "RF & microwave simulation with the finite integration technique - From component to system design," Scientific Computing in Electrical Engineering, 247-260, 2007.
doi:10.1007/978-3-540-71980-9_26
22. Marklein, R., "The finite integration technique as a general tool to compute acoustic, electromagnetic, elastodynamic, and coupled wave fields," Review of Radio Science, 201-244, IEEE Press, Piscataway, 2002.
23. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Edition, Artech House, 2007.
24. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues. 3. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, 2271-2293, Nov. 1996.
doi:10.1088/0031-9155/41/11/003