Vol. 137
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-06
Brain Mr Image Classification Using Multiscale Geometric Analysis of Ripplet
By
Progress In Electromagnetics Research, Vol. 137, 1-17, 2013
Abstract
We propose an automatic and accurate technique for classifying normal and abnormal magnetic resonance (MR) images of human brain. Ripplet transform Type-I (RT), an efficient multiscale geometric analysis (MGA) tool for digital images, is used to represent the salient features of the brain MR images. The dimensionality of the image representative feature vector is reduced by principal component analysis (PCA). A computationally less expensive support vector machine (SVM), called least square-SVM (LS-SVM) is used to classify the brain MR images. Extensive experiments were carried out to evaluate the performance of the proposed system. Two benchmark MR image datasets and a new larger dataset were used in the experiments, consisting 66, 160 and 255 images, respectively. The generalization capability of the proposed technique is enhanced by 5 × 5 cross validation procedure. For all the datasets used in the experiments, the proposed system shows high classification accuracies (on an average > 99%). Experimental results and performance comparisons with state-of-the-art techniques, show that the proposed scheme is efficient in brain MR image classification.
Citation
Sudeb Das, Manish Chowdhury, and Malay Kumar Kundu, "Brain Mr Image Classification Using Multiscale Geometric Analysis of Ripplet," Progress In Electromagnetics Research, Vol. 137, 1-17, 2013.
doi:10.2528/PIER13010105
References

1. Westbrook, C., Handbook of MRI Technique, John Wiley & Sons, 2008.

2. Scapaticci, R., L. Di Donato, I. Catapano, and L. Crocco, "A feasibility study on microwave imaging for brain stroke monitoring," Progress In Electromagnetics Research B, Vol. 40, 305-324, 2012.

3. Prasad, P. V., Magnetic Resonance Imaging: Methods and Biologic Applications (Methods in Molecular Medicine), Humana Press, 2005.

4. Asimakis, N. P., I. S. Karanasiou, P. K. Gkonis, and N. K. Uzunoglu, "Theoretical analysis of a passive acoustic brain monitoring system," Progress In Electromagnetics Research B, Vol. 23, 165-180, 2010.
doi:10.2528/PIERB10053112

5. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI induced heating of deep brain stimulation leads: Effect of the air-tissue interface," Progress In Electromagnetics Research, Vol. 83, 81-91, 2008.
doi:10.2528/PIER08040504

6. Maji, P., M. K. Kundu, and B. Chanda, "Second order fuzzy measure and weighted co-occurrence matrix for segmentation of brain MR images," Fundamenta Informaticae, Vol. 88, No. 1-2, 161-176, 2008.

7. Golestanirad, L., A. P. Izquierdo, S. J. Graham, J. R. Mosig, and C. Pollo, "Effect of realistic modeling of deep brain stimulation on the prediction of volume of activated tissue," Progress In Electromagnetics Research, Vol. 126, 1-16, 2012.
doi:10.2528/PIER12013108

8. Mohsin, S. A., "Concentration of the specific absorption rate around deep brain stimulation electrodes during MRI," Progress In Electromagnetics Research, Vol. 121, 469-484, 2011.
doi:10.2528/PIER11022402

9. Rombouts, S. A., F. Barkhof, and P. Scheltens, Clinical Applications of Functional Brain MRI, Oxford University Press, 2007.

10. Oikonomou, A., I. S. Karanasiou, and N. K. Uzunoglu, "Phased array near field radiometry for brain intracranial applications," Progress In Electromagnetics Research, Vol. 109, 345-360, 2010.
doi:10.2528/PIER10073004

11. Maji, P., B. Chanda, M. K. Kundu, and S. Dasgupta, "Deformation correction in brian MRI using mutual information and genetic algorithm," Proc. Int. Conf. Computing: Theory and Applications, 372-376, 2007.

12. Zhang, Y., L. Wu, and S. Wang, "Magnetic resonance brain image Magnetic resonance brain image classi¯cation by an improved artificial bee colony algorithm," Progress In Electromagnetics Research, Vol. 116, 65-79, 2011.

13. Chaplot, S., L. M. Patnaik, and N. R. Jagannathan, "Classification magnetic resonance brain images using wavelets as input to support vector machine and neural network," Biomedical Signal Processing and Control, Vol. 1, No. 1, 86-92, 2006.
doi:10.1016/j.bspc.2006.05.002

14. Maitra, M. and A. Chatterjee, "A Slantlet transform based intelligent system for magnetic resonance brain image classification," Biomedical Signal Processing and Control, Vol. 1, No. 4, 299-306, 2006.
doi:10.1016/j.bspc.2006.12.001

15. El-Dahshan, E.-S. A., T. Hosny, and A.-B. M. Salem, "Hybrid intelligent techniques for MRI brain images classification," Digital Signal Processing, Vol. 20, No. 2, 433-441, 2010.
doi:10.1016/j.dsp.2009.07.002

16. Zhang, Y., S. Wang, and L. Wu, "A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO," Progress In Electromagnetics Research, Vol. 109, 325-343, 2010.
doi:10.2528/PIER10090105

17. Zhang, Y., Z. Dong, L. Wu, and S. Wang, "A hybrid method for MRI brain image classification," Expert Systems with Applications, Vol. 38, No. 8, 10049-10053, 2011.
doi:10.1016/j.eswa.2011.02.012

18. Zhang, Y. and L.Wu, "An MR brain images classifier via principal component analysis and kernel support vector machine," Progress In Electromagnetics Research, Vol. 130, 369-388, 2012.

19. Xu, J., L. Yang, and D. Wu, "Ripplet: A new transform for image processing," Journal of Visual Communication and Image Representation, Vol. 21, No. 7, 627-639, 2010.
doi:10.1016/j.jvcir.2010.04.002

20. Candes, E. J. and D. L. Donoho, "Continuous curvelet transform: I. Resolution of the wavefront set," Applied and Computational Harmonic Analysis, Vol. 19, No. 2, 162-197, 2005.
doi:10.1016/j.acha.2005.02.003

21. Das, S., M. Chowdhury, and M. K. Kundu, "Medical image fusion based on ripplet transform type-I," Progress In Electromagnetics Research B , Vol. 30, 355-370, 2011.

22. Jolliffe, I. T., Principal Component Analysis, Springer, 2002.

23. Suykens, J. A. K. and J. Vandewalle, "Least squares support vector machine classifiers," Neural Processing Letters, Vol. 9, No. 3, 293-300, 1999.
doi:10.1023/A:1018628609742