Vol. 49
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-03-13
An EMI Inversing Problem for Landmine Characterization Based on Improved Particle Swarm Optimization and Finite Element Analysis
By
Progress In Electromagnetics Research B, Vol. 49, 411-428, 2013
Abstract
This paper discusses the characterization of landmine by using the electromagnetic induction technique (EMI). The proposed approach is based on the identification of the physical and geometrical properties of a landmine, from the sensor response. But in such an identification, the inverse problem is unavoidable. At first, we begin by simulating the landmine signature by solving a direct problem using the finite element method which constitutes the direct model. After that, we determine the landmine characteristics by using an inverse model based on a cost function optimization. This model is based on an iterative process which coupling nite element analysis and Particles Swarm Optimization (PSO). In this step, we apply two PSO techniques: the Standard PSO (SPSO) and the Improved PSO (IPSO), and discuss the problem of local minima of the cost function. The proposed iterative model is applied to determine the conductivity, geometry, and depth of metallic landmine from its signature measured by EMI. The numerical solution gives good results for the identification of landmine.
Citation
Yacine Matriche, Mouloud Feliachi, Abdelhalim Zaoui, and Mehdi Abdellah, "An EMI Inversing Problem for Landmine Characterization Based on Improved Particle Swarm Optimization and Finite Element Analysis," Progress In Electromagnetics Research B, Vol. 49, 411-428, 2013.
doi:10.2528/PIERB12122604
References

1. Wang, Y., Q. Song, T. Jin, Y. Shi, and X.-T. Huang, "Sparse time-frequency representation based feature extraction method for landmine discrimination," Progress In Electromagnetics Research, Vol. 133, 459-475, 2013.

2. Throckmorton, C. S., S. L. Tantum, Y. Tan, and L. M. Collins, "Independent component analysis for UXO detection in highly cluttered environments," Journal of Applied Geophysics, Vol. 61, No. 3-4, 304-317, Mar. 2007.
doi:10.1016/j.jappgeo.2006.05.007

3. Tiwari, K. C., D. Singh, and M. K. Arora, "Development of a model for detection and estimation of depth of shallow buried non-metallic landmine at microwave X-band frequency," Progress In Electromagnetics Research, Vol. 79, 225-250, 2008.
doi:10.2528/PIER07100201

4. Mahmoudi, M. and S. Y. Tan, "Depth detection of conducting marine mines via eddy-current and current-channeling response," Progress In Electromagnetics Research, Vol. 90, 287-307, 2009.
doi:10.2528/PIER09011301

5. Collins, L., C. E. Baum, and L. Carin, "Sensing of unexploded ordnance with magnetometer and induction data: Theory and signal processing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 5, 1005-1015, May 2003.
doi:10.1109/TGRS.2003.810922

6. Pasion, L. R. and D. W. Oldenburg, "A discrimination algorithm for UXO using time domain electromagnetics," Journal of Environmental and Engineering Geophysics, Vol. 6, No. 2, 91, 2001.
doi:10.4133/JEEG6.2.91

7. O'Neill, K., F. Shubitidze, I. Shamatava, and K. D. Paulsen, "Accounting for the effects of widespread discrete clutter in subsurface EMI remote sensing of metallic objects," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 1, 32-46, Jan. 2006.
doi:10.1109/TGRS.2005.858437

8. Miller, J. T., T. H. Bell, J. Soukup, and D. Keiswetter, "Simple phenomenological models for wideband frequency-domain electromagnetic induction," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 6, 1294-1298, Jun. 2001.
doi:10.1109/36.927452

9. Asten, M. W., "On the time-domain electromagnetic response of a conductive permeable sphere," Journal of Applied Geophysics, Vol. 67, 63-65, 2009.
doi:10.1016/j.jappgeo.2008.09.008

10. Moustafa, K. and K. F. A. Hussein, "Aperture sensor GPR system for land mine detection," Progress In Electromagnetics Research, Vol. 72, 21-37, 2007.
doi:10.2528/PIER07022607

11. Huang, Y., Y. Liu, Q. H. Liu, and J. Zhang, "Improved 3-D GPR detection by nufft combined with MPD method," Progress In Electromagnetics Research, Vol. 103, 185-199, 2010.
doi:10.2528/PIER10021005

12. Shubitidze, F., K. L. O'Neil, B. E. Barrowes, I. Shamatava, J. P. Fernandez, K. Sun, and K. D. Paulsen, "Application of the normalized surface magnetic charge model to UXO discrimination in cases with overlapping signals," Journal of Applied Geophysics, Vol. 61, 292-303, 2007.
doi:10.1016/j.jappgeo.2006.06.008

13. Kakulia, D., K. Tavzarashvili, G. Chelidze, and F. Shubitidze, "Inversion of soil's and immersed objects's electromagnetic parameters simultaneously," DIPED-2009 IEEE Proceedings, Vol. 978-1, 4244-4201, 2009.

14. Won, I. J., "Characterization of UXO-like targets using broadband electromagnetic induction sensors," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 3, 652-663, Mar. 2003.
doi:10.1109/TGRS.2003.809936

15. Huang, H., B. SanFilipo, A. Oren, and I. J. Won, "Coaxial coil towed EMI sensor array for UXO detection and characterization," Journal of Applied Geophysics, Vol. 61, No. 3-4, 217-226, Mar. 2007.
doi:10.1016/j.jappgeo.2006.06.005

16. Wang, W.-T., S.-X. Gong, Y.-J. Zhang, F.-T. Zha, J. Ling, and T. Wan, "Low RCS dipole array synthesis based on algorithm, MOM-PSO hybrid," Progress In Electromagnetics Research, Vol. 94, 119-132, 2009.
doi:10.2528/PIER09060902

17. Kennedy, J. and R. C. Eberhart, "Particle swarm optimization," EEE International Conference on Neural Networks, Vol. 4, 1942-1948, Perth, Australia, Jan. 1995.

18. Zhang, Y., S. Wang, and L. Wu, "A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO," Progress In Electromagnetics Research, Vol. 109, 325-343, 2010.
doi:10.2528/PIER10090105

19. Li, W.-T., X.-W. Shi, L. Xu, and Y.-Q. Hei, "Improved GA and PSO culled hybrid algorithm for antenna array pattern synthesis," Progress In Electromagnetics Research, Vol. 80, 461-476, 2008.
doi:10.2528/PIER07121503

20. Zhang, S., S.-X. Gong, Y. Guan, P.-F. Zhang, and Q. Gong, "A novel IGA-EDSPSO hybrid algorithm for the synthesis of sparse arrays," Progress In Electromagnetics Research, Vol. 89, 121-134, 2009.
doi:10.2528/PIER08120806

21. Zhang, J., K. Liu, Y. Tan, and X. He, "Random black hole particle swarm optimization and its application," IEEE International Conference on Neural Networks and Signal Processing, 359-365, Jun. 2008.

22. Park, K., S. Park, K. Kim, and K. H. Ko, "Mumti-feature based detection of landmines using ground penetrating radar," Progress In Electromagnetics Research, Vol. 134, 455-474, 2013.

23. Pepper, D. and J. C. Heinrich, The Finite Element Method-basic Concepts and Applications, Taylor and Francis Group, New York, 2006.