Vol. 137
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-03-12
Multifrequency Monopole Antennas by Loading Metamaterial Transmission Lines with Dual-Shunt Branch Circuit
By
Progress In Electromagnetics Research, Vol. 137, 703-725, 2013
Abstract
The theory and design of a new family of multifrequency monopole antennas by smartly loading a set of complementary metamaterial transmission line (CMTL) unit cells are investigated. The distributed CMTL elements, epsilon negative (ENG) or double negative (DNG) through incorporating additional capacitive gaps, contain a Koch-shaped extended complementary single split ring resonator pair (K-ECSSRRP) etched on the signal strip. The K-ECSSRRP features dual-shunt branches in the equivalent circuit model, rendering a distinguished resonator with dual zeroth-order resonant (ZOR) modes. By smartly controlling the element layout and loading different numbers of unit cells, ten antennas covering different communication standards (GSM1800, UMTS, Bluetooth, DMB and WIMAX) are designed and four of them are fabricated and measured. At most of operating frequencies, the antennas exhibit impedance matching better than -10 dB and normal monopolar radiation patterns. Numerical and experimental results both confirm that the single-cell or dual-cell ENG and DNG CMTL-loaded monopoles exhibit almost identical dual ZOR modes. Moreover, the loaded elements also contribute to the radiation, which is the major advantage of this prescription over previous lumped-element loadings. These antennas are compact and the multiple operating bands can be arbitrarily engineered, enabling an alternative and easy avenue toward monopoles with multifunction and high integration.
Citation
He-Xiu Xu, Guang-Ming Wang, Yuan-Yuan Lv, Mei-Qing Qi, Xi Gao, and Shuo Ge, "Multifrequency Monopole Antennas by Loading Metamaterial Transmission Lines with Dual-Shunt Branch Circuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
doi:10.2528/PIER12122409
References

1. Liu, W. C., "Optimal design of dualband CPW-fed G-shaped monopole antenna for WLAN application," Progress In Electromagnetics Research, Vol. 74, 21-38, 2007.
doi:10.2528/PIER07041401

2. Zhang, X., Y. Song, Z. H. Yan, J. B. Jiang, and Y. Y. Xia, "Design of wideband microstrip-fed plannar monopole antenna for multiband applications," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1623-1630, 2008.
doi:10.1163/156939308786390193

3. Cheng, P. C., C. Y. D. Sim, and C. H. Lee, "Multi-band printed internal monopole antenna for mobile handset applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1733-1744, 2009.
doi:10.1163/156939309789566978

4. Chen, W. S. and B. Y. Lee, "Novel printed monopole antenna for PDA phone and WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2073-2088, 2009.
doi:10.1163/156939309789932557

5. Anguera, J., J. P. Daniel, C. Borja, J. Mumbru, C. Puente, T. Leduc, K. Sayegrih, and P. Van Roy, "Metallized foams for antenna design: Application to fractal-shaped sierpinski-carpet monopole," Progress In Electromagnetics Research, Vol. 104, 239-251, 2010.
doi:10.2528/PIER10032003

6. Panda, J. R. and R. S. Kshetrimayum, "A printed 2.4 GHz/5.8 GHz dual-band monopole antenna with a protruding stub in the ground plane for WLAN and RFID applications," Progress In Electromagnetics Research, Vol. 117, 425-434, 2011.

7. Jiang, Y., Y. Yu, M. Yuan, and L. Wu, "A compact printed monopole array with defected ground structure to reduce the mutual coupling," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 1963-1974, 2011.
doi:10.1163/156939311798072036

8. Wang, B. and K.-M. Huang, "Spatial microwave power combining with anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 114, 195-210, 2011.

9. Chen, H., L. Huang, X. Cheng, and H. Wang, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011.

10. Valagiannopoulos, C. A., "Electromagnetic scattering of the field," Progress In Electromagnetics Research, Vol. 114, 51-66, 2011.

11. Liu, L., J. Sun, X. Fu, J. Zhou, Q. Zhao, B. Fu, J. Liao, and D. Lippens, "Artificial magnetic properties of dielectric metamaterials in terms of effective circuit model," Progress In Electromagnetics Research, Vol. 116, 159-170, 2011.

12. Hasar, U. C. and J. J. Barroso, "Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials," Progress In Electromagnetics Research, Vol. 112, 109-124, 2011.

13. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar vivaldi antennas based on inhomegeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.

14. Meng, F.-Y., Y.-L. Li, K. Zhang, Q. Wu, and L.-W. Li, "A detached zero index metamaterial lens for antenna gain enhancement," Progress In Electromagnetics Research, Vol. 132, 463-478, 2012.

15. Zari, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
doi:10.2528/PIER11110506

16. Nordin, M. A. W., M. T. Islam, and N. Misran, "Design of a compact ultrawideband metamaterial antenna based on the modified split-ring resonator and coactively loaded strips unit cell," Progress In Electromagnetics Research, Vol. 136, 157-173, 2013.

17. Kim, D. and M. Kim, "Narrow-beamwidth T-shaped monopole antenna fabricated from metamaterial wires," Electronics Letters, Vol. 44, No. 3, 180-182, Jan. 2008.
doi:10.1049/el:20083604

18. Antoniades, M. A. and G. V. Eleftheriades, "A folded-monopole model for electrically small NRI-TL metamaterial antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 425-428, 2008.
doi:10.1109/LAWP.2008.2008773

19. Ji, J. K., G. H. Kim, and W. M. Seong, "Bandwidth enhancement of metamaterial antennas based on composite right/left-handed transmission line," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 36-39, 2010.

20. Ibrahim, A. A. and A. M. E. Safwat, "Microstrip-fed monopole antennas loaded with CRLH unit cells," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4027-4036, Sep. 2012.
doi:10.1109/TAP.2012.2207080

21. Ibrahim, A., A. M. E. Safwat, and H. El-Hennawy, "Triple-band microstrip-fed monopole antenna loaded with CRLH unit cell," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1547-1550, 2011.
doi:10.1109/LAWP.2011.2181813

22. Antoniades, M. A., G. V. Eleftheriades, and E. S. Rogers, "A broadband dual-mode monopole antenna using NRI-TL metamaterial loading," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 258-261, 2009.
doi:10.1109/LAWP.2009.2014402

23. Jin, D.-L., J.-S. Hong, and H. Xiong, "Dual wideband antenna for WLAN/WiMAX and satellite system applications based on a metamaterial transmission line," Chin. Phys. Lett., Vol. 29, No. 10, 104101, 2012.
doi:10.1088/0256-307X/29/10/104101

24. Kokkinos, T. and A. P. Feresidis, "Low-profile folded monopoles with embedded planar metamaterial phase-shifting lines," IEEE Transactions on Antennas and Propagation, Vol. 57, 2997-3008, Oct. 2009.
doi:10.1109/TAP.2009.2028605

25. Gong, J. Q., J. B. Jiang, and C. H. Liang, "Low-profile folded-monopole antenna with unbalanced composite right-/left-handed transmission line," Electronics Letters, Vol. 48, 813-814, Jul. 2012.

26. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single-cell metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1031-1038, Apr. 2010.
doi:10.1109/TAP.2010.2041317

27. Palandoken, M., A. Grede, and H. Henke, "Broadband microstrip antenna with left-handed metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, 331-338, Feb. 2009.
doi:10.1109/TAP.2008.2011230

28. Barbuto, M., F. Bilotti, and A. Toscano, "Design of a mul-tifunctional SRR-loaded printed monopole antenna," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 22, No. 4, 552-557, Jul. 2012.
doi:10.1002/mmce.20645

29. Zhang, Y., W. Hong, C. Yu, Z.-Q. Kuai, Y.-D. Don, and J.-Y. Zhou, "Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 3063-3068, Sep. 2008.
doi:10.1109/TAP.2008.928815

30. Kim, J., C. S. Cho, and J. W. Lee, "5.2 GHz notched ultra-wideband antenna using slot-type SRR," Electronics Letters, Vol. 42, No. 6, 950, Aug. 2006.
doi:10.1049/el:20062183

31. Liu, J., S. Gong, Y. Xu, X. Zhang, C. Feng, and N. Qi, "Compact printed ultra-wideband monopole antenna with dual band-notched characteristics," Electronics Letters, Vol. 44, No. 12, 710-711, 2008.
doi:10.1049/el:20080931

32. Iizuk, H. and P. S. Hall, "Left-handed dipole antennas and their implementations," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1246-1253, May 2007.
doi:10.1109/TAP.2007.895568

33. Liu, Q., P. S. Hall, and A. L. Borja, "Efficiency of electrically small dipole antennas loaded with left-handed transmission lines," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3009-3017, Oct. 2009.

34. Azad, M. Z. and M. Ali, "Novel wideband directional dipole antenna on a mushroom like EBG structure," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 5, 1242-1250, May 2008.
doi:10.1109/TAP.2008.922673

35. Saenz, E., R. Gonzalo, I. Ederra, J. C. Varadaxoglou, and P. de Maagt, "Resonant meta-surface superstrate for single and multifrequency dipole antenna arrays," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 4, 951-960, Apr. 2008.
doi:10.1109/TAP.2008.919212

36. Zhou, T., B.-H. Sun, Q.-Z. Liu, J.-F. Li, and Z. Xu, "Novel compact circularly polarized microstrip antenna using left-handed transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5-6, 625-634, 2008.
doi:10.1163/156939308784159435

37. Xu, H. X., G. M. Wang, J. G. Liang, and T. P. Li, "A compact microstrip diplexer using composite right-/left-handed transmission line with enhanced harmonic suppression," Microwave Journal, Vol. 54, No. 11, 112, Nov. 2011.

38. Gil, M., J. Bonache, and F. Martin, "Synthesis and applications of new left handed microstrip lines with complementary split-ring resonators etched on the signal strip," IET Microw. Antennas Propag.,, Vol. 2, No. 4, 324-330, 2008.
doi:10.1049/iet-map:20070225

39. Xu, H. X., G. M. Wang, Z. M. Xu, X. Chen, Z. W. Yu, and L. Geng, "Dual-shunt branch circuit and harmonic suppressed device application," Applied Physics A, Vol. 108, 497-502, Aug. 2012.
doi:10.1007/s00339-012-6923-5

40. Sanada, A., C. Caloz, and T. Itoh, "Novel zeroth-order resonance in composite right/left handed transmission line resonators," Proc. Asia-Pacific Microwave Conf., Vol. 3, 1588-1591, 2003.