1. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966
2. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628
3. Liu, S.-H. and L.-X. Guo, "Negative refraction in an anisotropic metamaterial with a rotation angle between the principal axis and the planar interface," Progress In Electromagnetics Research, Vol. 115, 243-257, 2011.
4. Meng, F.-Y., Y.-L. Li, K. Zhang, Q. Wu, and J. L.-W. Li, "A detached zero index metamaterial lens for antenna gain enhancement," Progress In Electromagnetics Research, Vol. 132, 463-478, 2012.
5. Burlak, G., "Spectrum of cherenkov radiation in dispersive metamaterials with negative refraction index," Progress In Electromagnetics Research, Vol. 132, 149-158, 2012.
6. Li, F.-Q. Yang, and J. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.
7. Shao, J., H. Zhang, Y. Lin, and H. Xin, "Dual-frequency electromagnetic cloaks enabled by LC-based metamaterial circuits," Progress In Electromagnetics Research, Vol. 119, 225-237, 2011.
doi:10.2528/PIER11052507
8. He, X.-J., Y. Wang, J.-M. Wang, and T.-L. Gui, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.
9. M. R. I., M. T. Islam, and N. Misran, "Design analysis of new metamaterial for EM absorption reduction," Progress In Electromagnetics Research, Vol. 124, 119-135, 2012.
doi:10.2528/PIER11112301
10. Sabah, C. and H. G. Roskos, "Design of a terahertz polarization rotator based on a periodic sequence of chiral-metamaterial and dielectric slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.
doi:10.2528/PIER11112605
11. Xie, Y., J. Jiang, and S. He, "Proposal of cylindrical rolled-up metamaterial lenses for magnetic resonance imaging application and preliminary experimental demonstration," Progress In Electromagnetics Research, Vol. 124, 151-162, 2012.
doi:10.2528/PIER11121402
12. Zarifi, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
doi:10.2528/PIER11110506
13. Chen, H., L. Huang, X. Cheng, and H. Wang, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011.
14. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.
15. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.
doi:10.2528/PIER11101401
16. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699
17. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced non-linear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002
18. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite media with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184
19. Zhou, X., Y. H. Liu, and X. Zhao, "Low losses left-handed materials with optimized electric and magnetic resonance," Applied Physics A, Vol. 98, 643-649, 2010.
doi:10.1007/s00339-009-5458-x
20. Garcia-Meca, C., R. Ortuno, R. Salvador, A. Martinez, and J. Marti, "Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths," Optics Express, Vol. 15, 9320-9325, 2007.
doi:10.1364/OE.15.009320
21. Zhou, J., Th. Koschny, and C. M. Soukoulis, "An efficient way to reduce losses of left-handed metamaterials," Optics Express, Vol. 16, 11147-11152, 2008.
doi:10.1364/OE.16.011147
22. Zhao, Y. X., F. Chen, Q. Shen, Q. W. Liu, and L. M. Zhang, "Optimizing low loss negative index metamaterial for visible spectrum using differential evolution," Optics Express, Vol. 19, 11605-11614, 2011.
doi:10.1364/OE.19.011605
23. Bossard, J. A., S. Yun, D. H. Werner, and T. S. Mayer, "Synthesizing low loss negative index metamaterial stacks for the mid-infrared using genetic algorithms," Optics Express, Vol. 17, 14771-14779, 2009.
doi:10.1364/OE.17.014771
24. Bratkovsky, A., E. Ponizovskaya, S.-Y. Wang, P. Holmstrm, L. Thylen, Y. Fu, and H. Agren, "A metal-wire/quantum-dot composite metamaterial with negative ε and compensated optical loss," Applied Physics Letters, Vol. 93, 193106, 2008.
doi:10.1063/1.3013331
25. Fang, A., Z. X. Huang, T. Koschny, and C. M. Soukoulis, "Overcoming the losses of a split ring resonator array with gain," Optics Express, Vol. 19, 12688-12699, 2011.
doi:10.1364/OE.19.012688
26. Shen, J.-Q., "Gain-assisted negative refractive index in a quantum coherent medium," Progress In Electromagnetics Research, Vol. 133, 37-51, 2013.
27. Tassin, L. Z., T. Koschny, E. N. Economou, and C. M. Soukoulis, "Low loss metamaterials based on classical electromagnetically induced transparency," Physical Review Letters, Vol. 102, 051901, 2009.
doi:10.1103/PhysRevLett.102.053901
28. Zhu, L., F. Y. Meng, J. H. Fu, and Q. Wu, "Electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes," Journal of Physics D: Applied Physics, Vol. 45, 445105, 2012.
doi:10.1088/0022-3727/45/44/445105
29. Zhu, L., F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, "An approach to configure low-loss and full transmission metamaterial based on electromagnetically induced transparency," IEEE Transactions on Magnetics, Vol. 48, 4285-4288, 2012.
doi:10.1109/TMAG.2012.2200661
30. Liu, N., L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the drude damping limit," Nature Materials, Vol. 8, 758-762, 2009.
doi:10.1038/nmat2495
31. Zhu, L., F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, "Multi-band slow light metamaterial," Optics Express, Vol. 20, 4494-4502, 2012.
doi:10.1364/OE.20.004494
32. Zhu, L., L. Dong, F. Y. Meng, J. H. Fu, and Q. Wu, "Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application," Applied Optics, Vol. 51, 7794-7799, 2012.
doi:10.1364/AO.51.007794
33. Meng, F. Y., F. Zhang, K. Zhang, and Q. Wu, "Low-loss magnetic metamaterial based on analog of electromagnetically induced transparency," IEEE Transactions on Magnetics, Vol. 47, 3347-3350, 2011.
doi:10.1109/TMAG.2011.2151271
34. Li, T. Q., H. Liu, T. Li, S. M. Wang, J. X. Cao, Z. H. Zhu, Z. G. Dong, S. N. Zhu, and X. Zhang, "Suppression of radiation loss by hybridization effect in two coupled split-ring resonators," Physical Review B, Vol. 80, 115113, 2009.
doi:10.1103/PhysRevB.80.115113
35. Meng, F. Y., J. H. Fu, K. Zhang, Q. Wu, J. Y. Kim, J. J. Choi, B. Lee, and J. C. Lee, "Metamaterial analogue of electromagnetically induced transparency in two orthogonal directions," Journal of Physics D: Applied Physics, Vol. 44, 265402, 2011.
doi:10.1088/0022-3727/44/26/265402
36. Papasimakis, N., V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "Metamaterial analog of electromagnetically induced transparency," Physical Review Letters, Vol. 101, 253903, 2008.
doi:10.1103/PhysRevLett.101.253903
37. Tsakmakidis, K. L., M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, "Negative-permeability electromagnetically induced transparent and magnetically active metamaterials," Physical Review B, Vol. 81, 195128, 2010.
doi:10.1103/PhysRevB.81.195128
38. Szabo, Z., G.-H. Park, R. Hedge, and E. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 2646-2653, 2010.
doi:10.1109/TMTT.2010.2065310
39. Erentok, A., R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, et al. "Low frequency lumped element-based negative index metamaterial," Applied Physics Letters, Vol. 91, 184104, 2007.
doi:10.1063/1.2803771
40. Ban, Y.-L., J.-H. Chen, S.-C. Sun, J. L.-W. Li, and J.-H. Guo, "Printed wideband antenna with chip-capacitor-loaded inductive strip for LTE/GSM/UMTS WWAN wireless USB dongle applications," Progress In Electromagnetics Research, Vol. 128, 313-329, 2012.
41. Lai, A., T. Itoh, and C. Caloz, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, 3450, 2004.
doi:10.1109/MMW.2004.1337766
42. Gil, M., J. Bonache, J. Garcia-Garcia, J. Martel, and F. Martin, "Composite right/left-handed metamaterial transmission lines based on complementary split-rings resonators and their applications to very wideband and compact filter design," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 1296-1304, 2007.
doi:10.1109/TMTT.2007.897755
43. Alley, G. D., "Interdigital capacitors and their application to lumped element microwave integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 18, 1028-1033, 1970.
doi:10.1109/TMTT.1970.1127407