Vol. 28
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-01-04
Digitized Nonlinear Beam and Wave Interaction Theory of Traveling Wave Tube Amplifiers
By
Progress In Electromagnetics Research M, Vol. 28, 73-88, 2013
Abstract
To simulate the beam and wave interaction (BWI) of various types of traveling wave tube amplifiers (TWTAs), a digitized nonlinear theory has been developed with two features. Firstly, the digitized RF field profiles obtained from electromagnetic simulation software are applied to replace the analytical RF field profiles in TWTAs. Secondly, the relationship of energy conservation between the beam and RF fields is used to derive the RF field equations. Based on this nonlinear theory, onedimensional code has been constructed to predict the performances of TWTAs. Comparisons between the simulations and the experimental results for a K-band helix TWTA, a V-band coupled cavity (CC) TWTA and a W-band folded waveguide (FWG) TWTA are made and discussed to prove the validation of this nonlinear theory.
Citation
Weifeng Peng, Yu Lu Hu, Zan Cao, and Zhong-Hai Yang, "Digitized Nonlinear Beam and Wave Interaction Theory of Traveling Wave Tube Amplifiers," Progress In Electromagnetics Research M, Vol. 28, 73-88, 2013.
doi:10.2528/PIERM12120709
References

1. Pierce, J. R., Traveling Wave Tubes, D. Van Nostrand, New York, 1950.

2. Rowe, J. E., Nonlinear Electron-Wave Interaction Phenomena, Academic Press, Inc., New York, 1965.

3. Pierce, J. R. and L. M. Field, "Traveling-wave tubes," Proc. IRE, Vol. 35, 108-111, 1947.
doi:10.1109/JRPROC.1947.226216

4. Rowe, J. E., "A large-signal analysis of the traveling-wave amplifier: Theory and general results," IEEE Trans. Electron Dev., Vol. 3, No. 1, 39-56, 1956.

5. Antonsen Jr., T. M., A. A. Mondelli, B. Levush, J. P. Verboncoeur, and C. K. Birdsall, "Advances in modeling and simulation of vacuum electronic devices," Proc. IEEE, Vol. 87, No. 5, 804-839, 1999.
doi:10.1109/5.757256

6. Antonsen Jr., T. M. and B. Levush, "Traveling-wave tube devices with nonlinear dielectric elements," IEEE Trans. Plasma Sci., Vol. 26, No. 3, 774-786, 1998.
doi:10.1109/27.700830

7. Chernin, D. P., T. M. Antonsen Jr., B. Levush, and D. R. Whaley, "A three-dimensional multifrequency large signal model for helix traveling wave tubes," IEEE Trans. Electron Dev., Vol. 48, No. 3, 3-11, 2001.
doi:10.1109/16.892161

8. Freund, H. P., E. G. Zaidman, and T. M. Antonsen Jr., "Theory of helix traveling wave tubes with dielectric and vane loading," Phys. of Plasmas, Vol. 3, No. 8, 3145-3161, 1996.
doi:10.1063/1.871590

9. Freund, H. P. and E. G. Zaidman, "Nonlinear theory of collective effects in helix traveling wave tubes," Phys. of Plasmas, Vol. 4, No. 6, 2292-2301, 1997.
doi:10.1063/1.872393

10. Freund, H. P. and E. G. Zaidman, "Time-dependent simulation of helix traveling wave tubes," Phys. of Plasmas, Vol. 7, No. 12, 5182-5194, 2000.
doi:10.1063/1.1319338

11. Srivastava, V., "SUNRAY-2.5D code for multi-signal large-signal analysis of a complete helix TWT," IEEE Int. Vacuum Electron. Conf., 303-304, Bangalore, India, 2011.

12. Chernin, D. P., D. Dialetis, T. M. Antonsen Jr., J. Legarra, J. Qiu, and B. Levush, "Validation studies for CHRISTINE-CC using a Ka-band coupled-cavity TWT," IEEE Int. Vacuum Electron. Conf., 399-400, Nonterey, California, 2006.

13. Chernin, D. P., T. M. Antonsen Jr., I. A. Chernyavskiy, A. N. Vlasov, B. Levush, R. Begum, and J. R. Legarra, "Large-signal multifrequency simulation of coupled-cavity TWTs," IEEE Trans. Electron Dev., Vol. 58, No. 4, 1229-1239, 2011.
doi:10.1109/TED.2011.2106504

14. Freund, H. P., T. M Antonsen., Jr., E. G. Zaidman, B. Levush, and J. Legarra, "Nonlinear time-domain analysis of coupled-cavity traveling-wave tubes," IEEE Trans. Plasma Sci., Vol. 30, No. 3, 1024-1040, 2002.
doi:10.1109/TPS.2002.802148

15. Wallander, S. O., "Large signal analytical study of bunching in klystrons," IEEE Trans. Electron Dev., Vol. 15, No. 8, 595-603, Aug. 1968.
doi:10.1109/T-ED.1968.16407

16. Morwood, R. C. and F. I. Friedlander, "LSCEX3: A computer program for large signal analysis of klystrons, twystrons, and traveling wave tubes with cavity circuits,", Varian Associates Report, Dec. 1979.

17. Vaughan, J. R., "Calculation of coupled-cavity TWT performance," IEEE Trans. Electron Dev., Vol. 22, No. 10, 880-890, Oct. 1975.
doi:10.1109/T-ED.1975.18237

18. Vlasov, A. N., T. M. Antonsen, Jr, D. P. Chernin, B. Levush, and E. L. Wright, "Simulation of microwave devices with external cavities using MAGY," IEEE Trans. Plasma Sci., Vol. 30, No. 3, 1277-1291, 2002.
doi:10.1109/TPS.2002.801600

19. Vlasov, A. N., S. J. Cooke, B. Levush, T. M. Antonsen Jr., I. A. Chernyavskiy, and D. Chernin, "Modeling of coupled cavity TWT with TESLA," Proc. Int. Conf. Vacuum Electron., 155-156, Rome, Italy, 2009.

20. Vlasov, A. N., S. J. Cooke, B. Levush, T. M. Antonsen Jr., I. A. Chernyavskiy, and D. Chernin, "2D modeling of beam-wave interaction in coupled cavity TWTs with TESLA," Proc. Int. Conf. Vacuum Electron., 405-406, Monterey, CA, 2010.

21. Goplen, B., L. Ludeking, D. Smithe, and G. Warren, "User con¯gurable MAGIC code for electromagnetic PIC calculations," Comput. Phys. Commun., Vol. 87, No. 1-2, 54-86, 1995.
doi:10.1016/0010-4655(95)00010-D

22. Ansoft HFSS "3-D electromagnetic Simulation Software,", Ansoft Corp., Pittsburgh.

23. Wilson, J. D. and C. L. Kory, "Simulation of cold-test parameters and RF output power for a coupled-cavity traveling-wave tube," IEEE Trans. Electron Dev., Vol. 42, No. 11, 2015-2020, 1995.
doi:10.1109/16.469412

24. Hu, Y. F., J. J. Feng, J. Cai, Y. H. Du, Y. Tang, and X. P. Wu, "Performance enhancement of W-band CW TWT," IEEE Int. Vacuum Electron. Conf., 21-22, Bangalore, India, 2011.

25. Morey, I. J. and C. K. Birdsall, "Traveling-wave-tube simulation: The IBC code," IEEE Trans. Plasma Sci., Vol. 18, No. 3, 482-489, 1990.
doi:10.1109/27.55918

26. Booske, J. H., M. C. Converse, C. K. Kory, C. T. Chevalier, D. A. Gallagher, K. E. Kreischer, V. O. Heinen, and S. Bhattacharjee, "Accurate parametric modeling of folded waveguide circuits for millimeter-wave traveling wave tubes," IEEE Trans. Electron Dev., Vol. 52, No. 5, 685-694, 2005.
doi:10.1109/TED.2005.845798

27. Bernardi, P., F. Andre, J. F. David, A. L. Clair, and F. Doveil, "Efficient time-domain simulations of a helix traveling-wave tube," IEEE Trans. Electron Dev., Vol. 58, No. 6, 1716-1767, 2011.
doi:10.1109/TED.2011.2125793

28. Freund, H. P., "Nonlinear theory of helix traveling wave tubes in the frequency domain," Phys. of Plasmas, Vol. 6, No. 9, 3633-3646, 1999.
doi:10.1063/1.873622

29. Hou, Y., J. Xu, H. R. Gong, Y. Y. Wei, L. N. Yue, G. Zhao, and Y. B. Gong, "Equivalent circuit analysis of ridge-loaded folded-waveguide slow-wave structures for millimeter-wave traveling-wave tubes," Progress In Electromagnetics Research, Vol. 129, 215-229, 2012.

30. Liu, Y., J. Xu, Y.-Y. Wei, X. Xu, F. Shen, M. Huang, T. Tang, W.-X. Wang, Y.-B. Gong, and J. Feng, "Design of a v-band high-power sheet-beam coupled-cavity traveling-wave tube," Progress In Electromagnetics Research, Vol. 123, 31-45, 2012.
doi:10.2528/PIER11092906

31. Li, B., Z. H. Yang, J. Q. Li, X. F. Zhu, T. Huang, X. L. Jin, Q. Hu, Y. L. Hu, L. Xu, J. J. Ma, L. Liao L. Xiao, and G. X. He, Theory and design of microwave-tube simulator suite, Vol. 56, No. 5, 919-927, IEEE Trans. Electron Dev., 2009.

32. Bai, C. J., J. Q. Li, Y. L. Hu, Z. H. Yang, and B. Li, "A nonlinear theory for coupled-cavity TWTs in beam-wave interaction," Int. Conf. Microwave and Millimeter Wave Tech., Vol. 5, 1-4, Chengdu, China, 2012.