Vol. 28
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-01-17
Wideband Planar Split Ring Resonator Based Metamaterials
By
Progress In Electromagnetics Research M, Vol. 28, 115-128, 2013
Abstract
In this paper, a method for increasing bandwidth of metamaterial structures is presented. The metamaterial structures used in this study are based on Split Ring Resonators (SRRs), the most recognized structures for realization of metamaterials with negative magnetic permeability coefficients. To increase the frequency bandwidth of such metamaterials, two different methods, 1) rotating the inner ring of SRR with different angles in a hybrid structure, which is herein called unit cell, 2) changing dimensions of SRR, are presented. Moreover, the effect of SRR arrangement in unit cell on bandwidth is investigated. The idea of bandwidth enhancement is verified via simulations, which are performed via full-wave method and measurements, which are done using a built strip-line setup.
Citation
Abdolshakoor Tamandani, Javad Ahmadi-Shokouh, and Saeed Tavakoli, "Wideband Planar Split Ring Resonator Based Metamaterials," Progress In Electromagnetics Research M, Vol. 28, 115-128, 2013.
doi:10.2528/PIERM12120318
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of epsilon and mu," Sov. Phys. Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1109/22.798002

3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 6, 77-79, Apr. 2001.
doi:10.1126/science.1058847

4. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic microstructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

5. Chen, H., L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegoczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E, Vol. 70, No. 5, 057605.1-057605.4, 2004.

6. Wu, B. I., W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of ­-like metallic patterns," App. Phys. Lett.,, Vol. 84, No. 9, 1537-1539, Mar. 2004.
doi:10.1063/1.1655673

7. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B, Vol. 69, No. 1, 014402.1-014402.5, 2004.
doi:10.1103/PhysRevB.69.014402

8. Ahmed, A. and M. A. Alsunaidi, "Design of wide-band metamaterials based on the split ring resonator," NATO ARW & META, 523-528, 2008.

9. Sabah, C. and H. G. Roskos, "Broadband terahertz metamaterial for negative refraction," PIERS Proceedings, 785-788, Moscow, Russia, Aug. 18-21, 2009.

10. De La Mata Luque, T. M., N. R. Devarapalli, and C. G. Christodoulou, "Investigation of bandwidth enhancement in volumetric left-handed metamaterials using fractal," Progress In Electromagnetics Research, Vol. 131, 185-194, 2012.

11. Chowdhury, D. R., R. Singh, M. Reiten, H. Chen, A. J. Taylor, J. F. O'Hara, and A. K. Azad, "A broadband planar terahertz metamaterial with nested structure," Opt. Exp., Vol. 19, No. 17, 15817-15823, Aug. 2011.
doi:10.1364/OE.19.015817

12. Huang, L., D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, "Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band," Opt. Lett., Vol. 37, No. 2, 154-156, 2012.
doi:10.1364/OL.37.000154

13. Rudolph, S. M. and A. Grbic, "Super-resolution focusing using volumetric, broadband NRI media," IEEE Trans. on Ant. and Pro., Vol. 56, No. 9, 2963-2969, Sep. 2008.
doi:10.1109/TAP.2008.928773

14. Lepetit, T., E. Akmansoy, M. Pate, and J. P. Ganne, "Broadban negative magnetism from all-dielectric metamaterial," Electron. Lett., Vol. 44, No. 19, Sep. 2008.
doi:10.1049/el:20081447

15. Cui, T. J., D. R. Smith, and R. Liu, "Metamaterials Theory, Design and Applications," Springer, 2009.

16. Wang, J., S. Qu, Z. Xu, H. Ma, Y. Yang, and C. Gu, "A controllable magnetic metamaterial: Split-ring resonator with rotated inner ring," IEEE Trans. on Ant. and Pro., Vol. 56, No. 7, 2018-2022, Jul. 2008.
doi:10.1109/TAP.2008.924728

17. Cameron, R. J., R. Mansour, and C. M. Kudsia, "Microwave Filters for Communication Systems: Fundamentals, Design and Applications," John Willey and Sons, 2007.

18. Chen, X., T. M. Grzegorczyk, B. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, No. 1, 016608.1-016608.7, Jul. 2004.

19. Yousefi, L., M. S. Boybay, and O. M. Ramahi, "Characterization of metamaterials using a strip line fixture," IEEE Trans. on Ant. and Pro., Vol. 59, No. 4, 1245-1253, Apr. 2011.
doi:10.1109/TAP.2011.2109360