Vol. 136
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-24
Structure Analysis of Single- and 2 Multi-Frequency Subspace Migrations in 3 Inverse Scattering Problems
By
Progress In Electromagnetics Research, Vol. 136, 607-622, 2013
Abstract
We carefully investigate the structure of single- and multi frequency imaging functions, that are usually employed in inverse scattering problems. Based on patterns of the singular vectors of the Multi-Static Response (MSR) matrix, we establish a relationship between imaging functions and the Bessel function. This relationship indicates certain properties of imaging functions and the reason behind enhancement in the imaging performance by multiple frequencies. Several numerical simulations with a large amount of noisy data are performed in order to support our investigation.
Citation
Young-Deuk Joh, Young Mi Kwon, Joo Young Huh, and Won-Kwang Park, "Structure Analysis of Single- and 2 Multi-Frequency Subspace Migrations in 3 Inverse Scattering Problems," Progress In Electromagnetics Research, Vol. 136, 607-622, 2013.
doi:10.2528/PIER12120313
References

1. Álvarez, D., O. Dorn, N. Irishina, and M. Moscoso, "Crack reconstruction using a level-set strategy," J. Comput. Phys., Vol. 228, 5710-5721, 2009.
doi:10.1016/j.jcp.2009.04.038

2. Ammari, H., "Mathematical Modeling in Biomedical Imaging II: Optical, Ultrasound, and Opto-Acoustic Tomographies," Lecture Notes in Mathematics: Mathematical Biosciences Subseries, Vol. 2035, Springer-Verlag, Berlin, 2011.

3. Ammari, H., J. Garnier, V. Jugnon, and H. Kang, "Stability and resolution analysis for a topological derivative based imaging functional," SIAM J. Control. Optim., Vol. 50, 48-76, 2012.
doi:10.1137/100812501

4. Ammari, H., J. Garnier, H. Kang, W.-K. Park, and K. Sølna, "Imaging schemes for perfectly conducting cracks," SIAM J. Appl. Math., Vol. 71, 68-91, 2011.
doi:10.1137/100800130

5. Ammari, H. and H. Kang, "Reconstruction of Small Inhomogeneities from Boundary Measurements," Lecture Notes in Mathematics, Vol. 1846, Springer-Verlag, Berlin, 2004.

6. Ammari, H., H. Kang, H. Lee, and W.-K. Park, "Asymptotic imaging of perfectly conducting cracks," SIAM J. Sci. Comput., Vol. 32, 894-922, 2010.
doi:10.1137/090749013

7. Chen, X., "Subspace-based optimization method in electric impedance tomography ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1397-1406, 2009.
doi:10.1163/156939309789476301

8. Cheney, M., "The linear sampling method and the MUSIC algorithm," Inverse Problems, Vol. 17, 591-595, 2001.
doi:10.1088/0266-5611/17/4/301

9. Delbary, F., K. Erhard, R. Kress, R. Potthast, and J. Schulz, "Inverse electromagnetic scattering in a two-layered medium with an application to mine detection," Inverse Problems, Vol. 24, 015002, 2008.
doi:10.1088/0266-5611/24/1/015002

10. Donelli, M., "A rescue radar system for the detection of victims trapped under rubble based on the independent component analysis algorithm," Progress In Electromagnetic Research M, Vol. 19, 173-181, 2011.
doi:10.2528/PIERM11061206

11. Donelli, M., I. J. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetic Research M, Vol. 18, 179-195, 2011.

12. Colton, D., H. Haddar, and P. Monk, "The linear sampling method for solving the electromagnetic inverse scattering problem," SIAM J. Sci. Comput., Vol. 24, 719-731, 2002.

13. Dorn, O. and D. Lesselier, "Level set methods for inverse scattering," Inverse Problems, Vol. 22, R67-R131, 2006.
doi:10.1088/0266-5611/22/4/R01

14. Griesmaier, R., "Multi-frequency orthogonality sampling for inverse obstacle scattering problems," Inverse Problems, Vol. 27, 085005, 2011.
doi:10.1088/0266-5611/27/8/085005

15. Hou, S., K. Huang, K. Sølna, and H. Zhao, "A phase and space coherent direct imaging method," J. Acoust. Soc. Am., Vol. 125, 227-238, 2009.
doi:10.1121/1.3035835

16. Kwon, O., J. K. Seo, and J.-R. Yoon, "A real-time algorithm for the location search of discontinuous conductivities with one measurement," Commun. Pur. Appl. Math., Vol. 55, 1-29, 2002.
doi:10.1002/cpa.3009

17. Lesselier, D. and B. Duchene, "Buried, 2-D penetrable objects illuminated by line sources: FFT-based iterative computations of the anomalous field," Progress In Electromagnetic Research, Vol. 5, 351-389, 1991.

18. Ma, Y.-K., P.-S. Kim, and W.-K. Park, "Analysis of topological derivative function for a fast electromagnetic imaging of perfectly conducing cracks," Progress In Electromagnetics Research, Vol. 122, 311-325, 2012.
doi:10.2528/PIER11092901

19. Park, W.-K., "Non-iterative imaging of thin electromagnetic inclusions from multi-frequency response matrix," Progress In Electromagnetics Research, Vol. 106, 225-241, 2010.
doi:10.2528/PIER10052506

20. Park, W.-K., "On the imaging of thin dielectric inclusions buried within a half-space," Inverse Problems, Vol. 26, 074008, 2010.
doi:10.1088/0266-5611/26/7/074008

21. Park, W.-K., "On the imaging of thin dielectric inclusions via topological derivative concept," Progress In Electromagnetics Research, Vol. 110, 237-252, 2010.
doi:10.2528/PIER10101305

22. Park, W.-K., "Topological derivative strategy for one-step iteration imaging of arbitrary shaped thin, curve-like electromagnetic inclusions," J. Comput. Phys., Vol. 231, 1426-1439, 2012.
doi:10.1016/j.jcp.2011.10.014

23. Park, W.-K. and D. Lesselier, "Electromagnetic MUSIC-type imaging of perfectly conducting, arc-like cracks at single frequency ," J. Comput. Phys., Vol. 228, 8093-8111, 2009.
doi:10.1016/j.jcp.2009.07.026

24. Park, W.-K. and D. Lesselier, "Fast electromagnetic imaging of thin inclusions in half-space affected by random scatterers," Waves Random Complex Media, Vol. 22, 3-23, 2012.
doi:10.1080/17455030.2010.536854

25. Park, W.-K. and D. Lesselier, "MUSIC-type imaging of a thin penetrable inclusion from its far-field multi-static response matrix," Inverse Problems, Vol. 25, 075002, 2009.
doi:10.1088/0266-5611/25/7/075002

26. Park, W.-K. and D. Lesselier, "Reconstruction of thin electromagnetic inclusions by a level set method," Inverse Problems, Vol. 25, 085010, 2009.
doi:10.1088/0266-5611/25/8/085010

27. Rosenheinrich, W., Tables of some indefinite integrals of bessel functions, Available at http://www.fh-jena.de/ rsh/Forschung/Stoer/besint.pdf.

28. Solimene, R., A. Dell'Aversano, and G. Leone, "Interferometric time reversal music for small scatterer localization," Progress In Electromagnetics Research, Vol. 131, 243-258, 2012.

29. Solimene, R., A. Buonanno, and R. Pierri, "Imaging small PEC spheres by a linear delta-approach," IEEE Trans. on Eosci. Remote, Vol. 46, 3010-3018, 2008.
doi:10.1109/TGRS.2008.919273

30. Solimene, R., A. Buonanno, F. Soldovieri, and R. Pierri, "Physical optics imaging of 3D PEC objects: Vector and multipolarized approaches," IEEE Trans. on Eosci. Remote, Vol. 48, 1799-1808, 2010.
doi:10.1109/TGRS.2009.2035053

31. Tsang, L., J. A. Kong, K.-H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations, Wiley, New York, 2001.

32. Zhu, G. K. and M. Popovic, "Comparison of radar and thermoacoustic technique in microwave breast imaging," Progress In Electromagnetics Research B, Vol. 35, 1-14, 2011.
doi:10.2528/PIERB11080204