Vol. 48
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-01-29
Prolate Ellipsoidal Lens for Antenna Systems Providing Multiple Asymmetric Beams
By
Progress In Electromagnetics Research B, Vol. 48, 289-312, 2013
Abstract
A 3-D shaped prolate ellipsoidal dielectric lens is designed to produce multiple asymmetric beams in Ka-band. Such radiation characteristics are useful in applications where the antenna system is mounted on platforms flying above Earth and the shape of the footprints have to be carefully controlled for different elevation angles. A set of design rules is introduced and the final designs are optimized using full-wave time-domain methods. A fully operational Ka-band antenna subsystem has been prototyped and measured. The final antenna lens has axes lengths of 62.3 mm and 57.8 mm and provides a maximum gain of 21 dB. When mounted on a stabilized platform at the altitude of 21 Km (a typical HAPS scenario), this antenna provides 19 circular ground footprints of 5 Km diameter each. Radiation pattern measurements show that such a lens reduces the natural beam footprint elongation unavoidable with traditional spherical lenses and confirm the validity of the proposed system.
Citation
Marco Letizia, Jean-Francois Zurcher, and Juan Mosig, "Prolate Ellipsoidal Lens for Antenna Systems Providing Multiple Asymmetric Beams," Progress In Electromagnetics Research B, Vol. 48, 289-312, 2013.
doi:10.2528/PIERB12120310
References

1. Carrasco, E., M. Arrebola, J. A. Encinar, and M. Barba, "Demonstration of a shaped beam reflectarray using aperture-coupled delay lines for LMDS central station antenna," IEEE Trans. Antennas Propagat., Vol. 56, 3103-3111, Oct. 2008.
doi:10.1109/TAP.2008.929452

2. Charvat, G. L., L. C. Kempel, E. J. Rothwell, C. M. Coleman, and E. L. Mokole, "An ultrawideband (UWB) switched-antenna-array radar imaging system," IEEE Int. Symp. on Phased Array Systems and Technology, 543-550, Oct. 2010.

3. Rao, S., M. Tang, C.-C. Hsu, and J. Wang, "Advanced antenna technologies for satellite communication payloads," 1st European Conference on Antennas and Propagation, Proc. EuCAP, 2006.

4. Averty, F., A. Louzir, J. F. Pintos, P. Chambelin, C. Person, G. Landrac, and J. P. Coupez, "Cost effective antenna for LEO-satellites communication system using a homogeneous lens," IEEE Antennas and Propagation Society International Symp., Vol. 1, 671-674, Jun. 2004.

5. Xu, Z., G. White, and Y. Zakharov, "Optimisation of beam pattern of high-altitude platform antenna using conventional beamforming," Proc. IEE, Vol. 153, No. 6, 865-870, Dec. 2006.
doi:10.1049/ip-com:20050355

6. Fonseca, N. J. G. and J. Sombrin, "Multi-beam reflector antenna system combining beam hopping and size reduction of effectively used spots," IEEE Trans. Antennas Propagat., Vol. 54, 88-99, Apr. 2012.

7. Costa, J. R., E. B. Lima, and C. A. Fernandes, "Compact beam-steerable lens antenna for 60-GHz wireless communications," IEEE Trans. Antennas Propagat., Vol. 57, 2926-2933, Oct. 2009.

8. Chreim, H., R. Chantalat, M. Thevenot, U. Naeem, S. Bila, T. Monediere, B. Palacin, Y. Cailloce, G. Caille, and P. De Maagt, "An enhanced Ka-band reflector focal-plane array using a multifeed EBG structure," IEEE Antennas and Wireless Propagat. Lett., Vol. 9, 1152-1156, 2010.
doi:10.1109/LAWP.2010.2096796

9. Thornton, J., "A low sidelobe asymmetric beam antenna for high altitude platform communications," IEEE Microw. Wireless Comp. Lett., Vol. 14, No. 2, 59-61, Feb. 2004.
doi:10.1109/LMWC.2003.822566

10. Katzis, K. and D. Grace, "Inter-high-altitude-platform handoff for communications systems with directional antennas," Radio Science Bulletin, No. 330, 29-38, Mar. 2010.

11. Palma-Lazgare, I. R. and J. A. Delgado-Penin, "WiMAX HAPS-based downlink performances employing geometrical and statistical propagation-channel characteristics," Radio Science Bulletin, Vol. 330, 50-66, Mar. 2010.

12. Abella, C., J. Peces, M. Marn, J. Martinez, and K. Markus, "Development of a compact antenna for global earth coverage," Proc. 23rd Eur. Microwave Conf., 906-908, Madrid, Spain, Oct. 1993.

13. Lin, S.-M., Y.-Q. Wang, and P.-L. Shen, "Phase-only synthesis of the shaped beam patterns for the satellite planar array antenna," Proc. IEEE, 331-334, 2000.

14. Martinez-Lorenzo, J., "A shaped and reconfigurable reflector antenna with sectorial beams for LMDS base station," IEEE Trans. Antennas Propagat., Vol. 54, No. 4, Apr. 2006.
doi:10.1109/TAP.2006.872650

15. Koleck, T., "Active antenna coverage synthesis for GEO satellite using genetic algorithm," Proc. Int. Symp. on Antennas and Propagat., 142-144, 2003.

16. Villegas, F. J., "Parallel genetic-algorithm optimization of shaped beam coverage areas using planar 2-D phased arrays," IEEE Trans. Antennas Propagat., Vol. 58, 604-608, Feb. 2010.

17. Corcoles, J., J. Rubio, and M. A. Gonzalez, "Spherical-wave-based shaped-beam field synthesis for planar arrays including the mutual coupling effects," IEEE Trans. Antennas Propagat., Vol. 59, 2872-2881, Aug. 2011.
doi:10.1109/TAP.2011.2158950

18. Liu, Y., Q. H. Liu, and Z. Nie, "Reducing the number of elements in the synthesis of shaped-beam patterns by the forward-backward matrix pencil method," IEEE Trans. Antennas Propagat., Vol. 55, 1745-1753, Jun. 2007.

19. Smulders, P. F. M., "Exploiting the 60 GHz band for local wireless multimedia access: Prospects and future directions," IEEE Commun. Mag., Vol. 40, No. 1, 140-147, Jan. 2002.
doi:10.1109/35.978061

20. Costa, J. R., C. A. Fernandes, G. Godi, R. Sauleau, L. Le Coq, and H. Legay, "Compact Ka-band lens antennas for LEO satellites," IEEE Trans. Antennas Propagat., Vol. 56, 1251-1258, May 2008.
doi:10.1109/TAP.2008.922690

21. Letizia, M., J.-F. ZÄurcher, B. Fuchs, C. Z. Gaston, and J. R. Mosig, "Circularly polarized multi-beam lens antenna system. Comparison between 2 polarizers," 6th European Conference on Antennas and Propagation, Proc. EuCAP, 2012.

22. Sauleau, R. and B. Barµes, "A complete procedure for the design and optimization of arbitrarily-shaped integrated lens antennas," IEEE Trans. Antennas Propagat., Vol. 54, No. 4, 1122-1133, Apr. 2006.
doi:10.1109/TAP.2006.872563

23. Rolland, A., R. Sauleau, and L. Le Coq, "Flat-shaped dielectric lens antenna for 60-GHz applications," IEEE Trans. Antennas Propagat., Vol. 59, No. 11, 4041-4048, Nov. 2011.
doi:10.1109/TAP.2011.2164218

24. Letizia, M., B. Fuchs, C. Zorraquino, J. F. Zurcher, and J. R. Mosig, "Oblique incidence design of meander-line polarizers for dielectric lens antennas," Progress In Electromangeics Research, Vol. 45, 309-335, 2012.

25. Aragon-Zavala, A., J. L. Cuevas-Ruiz, and J. A. Delgado-Penin, High-Altitude Platforms for Wireless Communications, 5-15, John Wiley and Sons, 2008.
doi:10.1002/9780470997437.ch2

26. Haykin, S., Communication Systems, 4th Ed., 518-522, John Wiley and Sons, 2001.

27. Letizia, M., B. Fuchs, A. Skrivervik, and J. R. Mosig, "Circularly polarized lens antenna system providing multibeam radiation pattern for HAPS," Radio Science Bulletin, Vol. 330, 18-28, Mar. 2010.

28. Letizia, M., J.-F. ZÄurcher, B. Fuchs, J. R. Mosig, and A. Skrivervik, "Circularly polarized lens antenna system for high altitude platforms (HAPS)," 5th European Conference on Antennas and Propagation, Proc. EuCAP, 2011.

29. Balanis, C. A., Antenna Theory, 2nd Ed., Vol. 45, No. 86, John Wiley and Sons, New York, 1997.

30. Balanis, C. A., Antenna Theory, 2nd Ed., Vol. 575, No. 560, John Wiley and Sons, New York, 1997.

31. Sanford, J., "Scattering by spherically stratified microwave lens antennas," IEEE Trans. Antennas Propagat., Vol. 42, No. 5, 690-698, May 1994.
doi:10.1109/8.299568

32., www.cst.com.
doi:10.1109/8.299568