Vol. 37
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-01-19
Automatic Recognition of Metal Fiber Per Unit Area for Electromagnetic Shielding Fabric Based on Computer Image Analysis
By
Progress In Electromagnetics Research Letters, Vol. 37, 101-111, 2013
Abstract
Metal fiber content is often a measured parameter for electromagnetic shielding fabric (ESF). A commonly used method is combustion measuring, but measuring speed was slow and measured fabric damaged. This study proposes a new method based on computer image analysis for recognition of metal fiber content per unit area (MFCPUA) of the ESF, which aims at analyzing the MFCPUA without damage and providing a basis for the shielding performance evaluation of the ESF. Local region images of garment or fabric are obtained using high definition shooting system to build a gray matrix model which can describe the image. A recognition algorithm for fabric density based on gray extreme judgment is then given to construct a computation for the MFCPUA. The recognition results obtained with the proposed method is compared with the experimental results from manual combustion measuring, and the error reason and the application are also analyzed. Results of experiments and analyses show that the proposed method can identify the local fabric density with lossless and accurately calculate the MFCPUA, which provide a new method for electromagnetic shielding performance evaluation of the fabric and garment by computer technique.
Citation
Zhe Liu, Xiuchen Wang, and Zhong Zhou, "Automatic Recognition of Metal Fiber Per Unit Area for Electromagnetic Shielding Fabric Based on Computer Image Analysis," Progress In Electromagnetics Research Letters, Vol. 37, 101-111, 2013.
doi:10.2528/PIERL12120104
References

1. Jayasree, P. V. Y., V. S. S. N. S. Baba, B. Prabhakar Rao, and P. Lakshman, "Analysis of shielding effectiveness of single, double and laminated shields for oblique incidence of EM waves," Progress In Electromagnetics Research B, Vol. 22, 187-202, 2010.
doi:10.2528/PIERB10051305

2. Ching, I. S. and T. C. Jin, "Effect of stainless steel-containing fabrics on electromagnetic shielding effectiveness," Textile Res. J., Vol. 74, No. 1, 51-54, 2004.
doi:10.1177/004051750407400109

3. Knittel, D. and E. Schollmeyer, "Electrically high-conductive textiles," Synthetic Metals, Vol. 159, No. 14, 1433-1437, 2009.
doi:10.1016/j.synthmet.2009.03.021

4. Wang, X. C. and Z. Liu, "A new computation of shielding effectiveness of electromagnetic radiation shielding fabric," Progress In Electromagnetics Research Letters, Vol. 33, 177-186, 2012.

5. Mogli, F., V. Mariani Primiani, and A. P. Pastore, "Modeling of the human exposure inside a random plane wave field," Progress In Electromagnetics Research B, Vol. 29, 251-267, 2011.
doi:10.2528/PIERB11022506

6. Zenteno-Mateo, B., V. Cerdan-Ramirez, B. Flores-Desirena, M. P. Sampedro, E. Juarez-Ruiz, and F. Perez-Rodriguez, "Effective permittivity tensor for a metal-dielectric superlattice," Progress In Electromagnetics Research Letters, Vol. 22, 165-174, 2011.

7. Osman, M. A. R., M. K. Abd Rahim, N. A. Samsuri, H. A. M. Salim, and M. F. Ali, "Embroidered fully textile wearable antenna for medical monitoring applications," Progress In Electromagnetics Research, Vol. 117, 321-337, 2011.

8. Chung, F. and J. Kuo, "Computerized color separation system for printed fabrics by using backward-propagation neural network," Fibers and Polymers, Vol. 8, No. 5, 529-536, 2007.
doi:10.1007/BF02875876

9. Aruvazhagan, S. and L. Ganesan, "Texture classification using wavelet transform," Pattern Recognition Letters, Vol. 3, No. 24, 1513-1521, 2003.
doi:10.1016/S0167-8655(02)00390-2

10. Liu, Z. and X. C. Wang, "Influence of fabric weave type on the effectiveness of electromagnetic shielding woven fabric," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1848-1856, 2012.
doi:10.1080/09205071.2012.717352

11. Qian, Z. and Z. J. Chen, Electromagnetic Compatibility Design and Interference Suppression Technology, Zhejiang University Press, Hangzhou, 2000.