Vol. 136
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-16
Theory and Realization of Simple Bandpass Filters with Antiparallel Configuration
By
Progress In Electromagnetics Research, Vol. 136, 101-122, 2013
Abstract
This paper introduces a theoretical analysis as well as a design example for bandpass filters (BPF) with a distinctive topology. Based on the analysis of simple two-port symmetrical lossless networks with a parallel structure, a method for obtaining normalized BPF prototypes with desired bandwidths was developed. These prototypes can be scaled to any central frequency and symmetrical real termination in the same way as conventional filters. It is also demonstrated that with a slight modification of the basic BPF prototypes, transmission zeros with controllable frequencies can be introduced in both the lower and the upper stopband region. Such modified prototypes are more convenient for the realization of printed filters than the basic BPF prototypes. The proposed filters have almost identical characteristics in the broad vicinity of the passband region either when composed of ideal lumped elements or of transmission lines (TLs). Due to its simplicity, the proposed concept could be applied for the realization of a printed BPF at a large variety of PCB types, substrates and practical design configurations. A microstrip BPF model is realized for the experimental verification of the presented theory. The measured and theoretical results show excellent agreement, confirming the proposed concept and the exactness of the methodology.
Citation
Sinisa Jovanovic, Bratislav Milovanovic, and Miodrag Gmitrovic, "Theory and Realization of Simple Bandpass Filters with Antiparallel Configuration," Progress In Electromagnetics Research, Vol. 136, 101-122, 2013.
doi:10.2528/PIER12112807
References

1. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matching Networks and Coupling Structures, McGraw Hill, 1965.

2. Hong, J. S., Microstrip Filters for RF/Microwave Applications, 2nd Ed., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2011.

3. Osipenkov, V. and S. G. Vesnin, "Microwave filters of parallel cascade structure," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 7, 1360-1367, Jul. 1994.
doi:10.1109/22.299730

4. Tsai, C.-M., S.-Y. Lee, and C.-C. Tsai, "Performance of a planar filter using a 0o feed structure," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 10, 2362-2367, Oct. 2002.
doi:10.1109/TMTT.2002.803421

5. Zhu, Y.-Z. and Y.-J. Xie, "Novel microstrip bandpass filters with transmission zeros," Progress In Electromagnetics Research, Vol. 77, 29-41, 2007.
doi:10.2528/PIER07072301

6. Zhang, J., J.-Z. Gu, B. Cui, and X.-W. Sun, "Compact and harmonic suppression open-loop resonator bandpass filter with tri-section SIR," Progress In Electromagnetics Research, Vol. 69, 93-100, 2007.
doi:10.2528/PIER06120702

7. Dai, G. and M. Xia, "Novel miniaturized bandpass filters using spiral-shaped resonators and window feed structures," Progress In Electromagnetics Research, Vol. 100, 235-243, 2010.
doi:10.2528/PIER09120401

8. Lee, S.-Y. and C.-M. Tsai, "New cross-coupled filter design using improved hairpin resonators," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 12, 2482-2490, Dec. 2000.
doi:10.1109/22.899002

9. Namsang, A. and P. Akkaraekthalin, "A microstrip bandpass filter using asymmetrical stepped-impedance resonators," Asia-Pacific Microwave Conference, APMC 2007, 1-4, Dec. 11-14, 2007.

10. Kuo, J.-T. and E. Shih, "Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 4, 1154-1159, 2003.

11. Chen, W.-N., W.-K. Chia, C.-F. Yang, and C.-L. Shih, "Improving the coupling characteristics of bandpass filters by using multilayer structure and defect ground units," Asia-Pacific Microwave Conference, APMC 2007, 1-3, Dec. 11-14, 2007.

12. Chu, Q.-X. and H. Wang, "Planar quasi-elliptic filters with inline EM coupled open-loop resonators," IEEE MTT-S International Microwave Workshop Series on Art of Miniaturizing RF and Microwave Passive Components, 47-50, Dec. 2008.
doi:10.1109/IMWS.2008.4782258

13. Krongkitsiri, W., C. Mahatthanajatuphat, and P. Akkaraekthalin, "Wideband bandpass filters using parallel-coupled sirs with wide spurious supprre-ssion," Progress In Electromagnetics Research C, Vol. 27, 69-83, 2012.
doi:10.2528/PIERC11120610

14. Lee, K. C., H. T. Su, and M. K. Haldar, "Compact microstrip bandpass filters using triple-mode resonator," Progress In Electromagnetics Research Letters, Vol. 35, 89-98, 2012.

15. Jovanovic, S. and A. Nesic, "Microstrip bandpass filter with new type of capacitive coupled resonators," Electronics Letters, Vol. 41, No. 1, 19-21, Jan. 2005.
doi:10.1049/el:20057267

16. Jovanovic, S. and A. Nesic, "Printed band-pass filter at L band," 14th IST Mobile & Wireless Communications Summit, Dresden, Jun. 19-23, 2005.

17. Jovanovic, S. and A. Nesic, "A new microstrip bandpass filter for UHF range," 7th TELSIKS 2005, Vol. 1, 167-169, Niš, Serbia, Sep. 28-30, 2005.

18. Jovanovic, S. and A. Nesic, "New filter type suitable for miniature printed bandpass filters at RF & microwave frequencies," European Microwave Conference, 25-28, Paris, Oct. 3-7, 2005.

19. Jovanovic, S. and A. Nesic, "Capacitive coupled microstrip band-pass filter with asymmetrically capacitive loaded resonators," Mediterranean Microwave Symposium MMS 2007, 113-116, Budapest, Hungary, May 14-16, 2007.

20. Prabhu, S., J. S. Mandeep, and S. Jovanovic, "Microstrip bandpass filter at S band using capacitive coupled resonator," Progress In Electromagnetics Research, Vol. 76, 223-228, 2007.
doi:10.2528/PIER07071205

21. Mandeep, J. S., S. Prabhu, and S. Jovanovic, "Design of capacitive coupled resonator microstrip filter," Microwave and Optical Technology Letters, Vol. 50, No. 2, 460-462, Feb. 2008.
doi:10.1002/mop.23094

22. Jovanovic, S., "An overview of microwave bandpass filters with capacitive coupled resonator," Microwave Review, Vol. 16, No. 2.

23. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley&Sons, New York, 2011.

24. Rautio, J. C., "Measurement of uniaxial anisotropy in Rogers RO3010 substrate material," IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, COMCAS 2009, 1-4, Nov. 9-11, 2009.
doi:10.1109/COMCAS.2009.5386053