1. Novotny, L. and N. van Hulst, "Antennas for light," Nat. Photonics, Vol. 5, 83-90, 2011.
doi:10.1038/nphoton.2010.237
2. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937
3. Sun, S., Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index meta-surface as a bridge linking propagating waves and surface waves," Nat. Materials, Vol. 11, 426-431, 2012.
doi:10.1038/nmat3292
4. Navarro-Cia, M. and S. A. Maier, "Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation," ACS Nano, Vol. 6, 3537-3544, 2012.
doi:10.1021/nn300565x
5. Aouani, H., M. Navarro-Cia, M. Rahmani, T. Sidiropoulos, M. Hong, R. Oulton, and S. A. Maier, "Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light," Nano Lett., Vol. 12, 4997-5002, 2012.
doi:10.1021/nl302665m
6. Schuller, J. A., T. Taubner, and M. L. Brongersma, "Optical antenna thermal emitters," Nat. Photonics, Vol. 18, 658-661, 2009.
doi:10.1038/nphoton.2009.188
7. Yadipour, R., K. Abbasian, A. Rostami, and Z. D. Koozeh Kanani, "A novel proposal for ultra-high resolution and compact optical displacement sensor based on electromagnetically induced transparency in ring resonator," Progress In Electromagnetics Research, Vol. 77, 149-170, 2007.
doi:10.2528/PIER07081201
8. Mortazavi, D., A. Z. Kouzani, and K. C. Vernon, "A resonance tunable and durable LSPR nano-particle sensor: Al2O3 capped silver nano-disks," Progress In Electromagnetics Research, Vol. 130, 429-446, 2012.
9. Cao, L., J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, "Resonant germanium nanoantenna photodetectors," Nano Lett., Vol. 10, 1229-1233, 2010.
doi:10.1021/nl9037278
10. Gao, H., K. Li, F. Kong, H. Xie, and J. Zhao, "Optimizing nano-optical antenna for the enhancement of spontaneous emission," Progress In Electromagnetics Research, Vol. 104, 313-331, 2010.
doi:10.2528/PIER09111607
11. Roxworthy, B. J., K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, K. C. Toussaint, and Jr., "Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting ," Nano Lett., Vol. 12, 796-801, 2012.
doi:10.1021/nl203811q
12. Pan, L., Y. Park, E. Ulin-Avila, S. Xiong, D. B. Bogy, and X. Zhang, "Maskless plasmonic lithography at 22nm resolution," Scientific Reports, Vol. 1, Article No. 175, 2011, DOI: 10.1038/srep00175.
13. Wang, H., L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. C. Chong, "Subwavelength and super-resolution nondiffraction beam," Appl. Phys. Lett., Vol. 89, 171102, 2006.
doi:10.1063/1.2364693
14. Ashkin, A., J. M. Dziedzic, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett., Vol. 11, 288, 1986.
doi:10.1364/OL.11.000288
15. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, Berlin Heidelberg, New York, 1988.
16. Wang, H., et al. "Fighting against diffraction: Apodization and near field diffraction structures," Laser Photonics Rev., 1-39, 2011.
17. Wang, H., C. T. Chong, and L. Shi, "Optical antennas and their potential applications to 10Terabit/in2 recording," IEEE: Optical Data Storage Meeting, 16-18, 2009.
18. Novotny, L. and B. Hecht, Principle of Nano-optics,, Cambridge University Press, 2006.
19. Chu, S., et al. "Cooling and trapping of neutral atoms," Phys. Rev. Lett., Vol. 57, 314, 1986.
doi:10.1103/PhysRevLett.57.314
20. Ashkin, A., J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature, Vol. 330, 769, 1987.
doi:10.1038/330769a0
21. Ashkin, A. and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science, Vol. 235, 1517, 1987.
doi:10.1126/science.3547653
22. Yang, A. H. J., M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature, Vol. 457, 71, 2009.
doi:10.1038/nature07593
23. Lumerical Solutions, Inc., http://www.lumerical.com.
24. Lumerical Solutions, Inc., http://www.lumerical.com/solutions/in-novation/fdtd multicoe±cient material modeling.html.
25. Terris, B. D., H. J. Mamin, and D. Rugar, "Nearfield optical data storage," Appl. Phys. Lett., Vol. 68, 141, 1996.
doi:10.1063/1.116127
26. Leen, J. B., P. Hansen, Y.-T. Cheng, A. Gibby, and L. Hesselink, "Near-field optical data storage using C-apertures," Appl. Phys. Lett., Vol. 97, 073111, 2010.
doi:10.1063/1.3474801
27. Da Costa, K. Q. and V. A. Dmitriev, "Bowtie nanoantennas with polynomial sides in the excitation and emission regimes," Progress In Electromagnetics Research B, Vol. 32, 57-73, 2011.
doi:10.2528/PIERB11032808
28. Kessentini, S. and D. Barchiesi, "Effect of gap shape on the spectral response and field enhancement of dimer-based biosensor," PIERS Proceedings, 24-28, Moscow, Russia, Aug. 19-23, 2012.
29. Yang, X., et al. "Optical force in hybrid plasmonic waveguides," Nano Lett., Vol. 11, 321-328, 2011.
doi:10.1021/nl103070n
30. Cao, T. and M. J. Cryan, "Modeling of optical trapping using double negative index fishnet metamaterials," Progress In Electromagnetics Research, Vol. 129, 33-49, 2012.
31. Ordal, M. A., et al. "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt., Vol. 22, 1099-1117, 1983.
doi:10.1364/AO.22.001099