Vol. 48
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-01-29
SS-Bsar with GNSS and a Stationary Receiver-Experimental Results
By
Progress In Electromagnetics Research B, Vol. 48, 271-287, 2013
Abstract
This paper presents experimental results in the study of Space-surface Bistatic SAR (SS-BSAR) with global navigation satellite system (GNSS) and stationary receiver. The system uses GNSS as the transmitter of opportunity and a self-built, low cost receiver being set-up and fixed on the earth. It is potentially useful at remote sensing applications such as earth monitoring. The system prototype and signal processing at each stage leading to final image are described. Experimental image analysis is the core of this paper, and therefore performed in details finally.
Citation
Zhangfan Zeng, "SS-Bsar with GNSS and a Stationary Receiver-Experimental Results," Progress In Electromagnetics Research B, Vol. 48, 271-287, 2013.
doi:10.2528/PIERB12112507
References

1. Martinsek, D. and R. Goldstein, "Bistatic radar experimen," EUSAR, 25-27, 1998.

2. Cherniakov, M., Bistatic Radar: Emerging Technology, Wiley, 2008.
doi:10.1002/9780470985755

3. Wu, J., Z. Li, Y. Huang, Q. H. Liu, and J. Yang, "Processing one-stationary bistatic SAR data using inverse scaled fourier transform," Progress In Electromagnetics Research, Vol. 129, 143-159, 2012.

4. Sun, J., S. Mao, G. Wang, and W. Hong, "Polar format algorithm for spotlight bistatic SAR with arbitrary geometry configuration," Progress In Electromagnetics Research, Vol. 103, 323-338, 2010.
doi:10.2528/PIER10030703

5. Cherniakov, M., T. Zeng, and E. Plakidis, "Galileo signal-based bistatic system for avalanche prediction," IGARSS, Vol. 2, 784-786, 2003.

6. Whitewood, A. P., "Bistatic radar using a spaceborne illuminator,", Ph.D. Thesis, 60, University College London, 2006.

7. He, X., M. Chernikaov, and T. Zeng, "Signal detectability in SS-BSAR with GNSS non-cooperative transmitter," IEE Proceedings on Radar, Sonar and Navigation, Vol. 152, 124-132, 2005.
doi:10.1049/ip-rsn:20045042

8. Zeng, T., M. Cherniakov, and T. Long, "Generalized approach to resolution analysis in BSAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, 461-474, 2005.
doi:10.1109/TAES.2005.1468741

9. Saini, R., R. Zuo, and M. Cherniakov, "Problem of signal synchronization in space-surface bistatic synthetic aperture radar based on global navigation satellite emissions --- Experimental results," ET Radar, Sonar and Navigation, Vol. 4, 110-125, 2010.
doi:10.1049/iet-rsn.2008.0121

10. Antoniou, M., R. Saini, and M. Cherniakov, "Result of a space-surface bistatic SAR image formation algorithm," IEEE Transactions on GRS, Vol. 45, 3359-3371, 2007.

11. Antoniou, M., M. Cherniakov, and H. Cheng, "Space-surface bistatic SAR image formation algorithms," IEEE Transactions on GRS, Vol. 47, 1827-1843, 2009.

12. Antoniou, M., Z. Zeng, F. Liu, and M. Cherniakov, "Experimental demonstration of passive BSAR imaging using navigation satellites and a fixed receiver," Geoscience and Remote Sensing Letters, Vol. 99, 1-5, 2011.

13. Sanz-Marcos, J., J. Mallorqui, A. Aguasca, and P. Prats, "First ENVISAT and ERS-2 parasitic bistatic fixed receiver SAR images processed with the subaperture range-Doppler algorithm," IGARSS, 1840-1843, 2006.

14. Lopez-Dekker, P., J. Merlano, S. Dugue, J. Sanz-Marcos, et al. "Bistatic SAR interferometry using ENVISAT and a ground based receiver: Experimental results," IGARSS, 107-110, 2007.

15. Gong, X. and G. Xu, "Internal time and phase synchronization for distributed micro-satellite SAR," International Conference on Radar, 1-4, 2006.

16. End, J. H. G., I. Walterscheid, and A. Brenner, "New aspects of bistatic SAR: Processing and experiments," IGARSS, Vol. 3, 1758-1762, 2004.

17. He, X., T. Zeng, and M. Cherniakov, "Signal detectability in DD-BSAR with GNSS non-cooperative transmitter," IEE Proceedings on Radar, Sonar and Navigation, Vol. 152, 124-132, 2005.
doi:10.1049/ip-rsn:20045042

18. kolnik, M., Radar Handbook, 2nd Ed., McGraw Hill, 1990.