1. Ozbay, , E., , "Ozbay, E., Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, , No. 5758, 189-193, 2006.
doi:10.1126/science.1114849
2. Liaw, , J.-W., C.-S. Chen, and J.-H. Chen, "Plasmonic effect of gold nanospheroid on spontaneous emission," Progress In Electromagnetic Research B, Vol. 31, 283-296, 2011.
3. Smajic, J., C. Hafner, L. Raguin, K. Tavzarashvili, and M. Mishrikey, "Comparison of numerical methods for the analysis of plasmonic structures," J. Comput. Theor. Nanos., Vol. 6, No. 3, 763-774, 2009..
doi:10.1166/jctn.2009.1107
4. Taflove, , A., S. C. Hagness, and , Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House Publishers, 685 Canton Street, , 2005.
5. Lee, , K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on lorentz-drude dispersive model on GPU for plasmonics applications ," Progress In Electromagnetic Research, Vol. 116, 441-456, 2011.
6. Shahmansouri, , A. a and B. Rashidian, "GPU implementation of split-field definite-difference time-domain method for drude-lorentz dispersive media," Progress In Electromagnetic Research,, Vol. 125, 55-77, 2012.
doi:10.2528/PIER12010505
7. Etchegoin, , P. G., E. C. Le Ru, and M. Meyer, "An analytic model for the optical properties of gold," J. Chem. Phys., Vol. 125, No. 16, 164705-3, 2006.
doi:10.1063/1.2360270
8. Young, , J. L., R. O. Nelson, and , "A summary and systematic analysis of FDTD algorithms for linearly dispersive media," IEEE Antennas Propag. Mag., Vol. 43, No. 1, 61-126, 2001.
doi:10.1109/74.920019
9. Etchegoin, , P. G., E. C. Le Ru, and M. Meyer, , "Erratum: `An analytic model for the optical properties of gold' ," [J. Chem. Phys., 125, 164705, 2006], Vol. 127, No. 18, 189901-1, 2007.
10. Vial, , A., T. Laroche, and , "Comparison of gold and silver dispersion laws suitable for FDTD simulations," Appl. Phys. B, Vol. 93, No. 1, 139-143, , 2008.
doi:10.1007/s00340-008-3202-4
11. Kelley, , D. F., R. J. Luebbers, and , "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. on Antennas and Propag., Vol. 44, No. 6, 792-797, 1996.
doi:10.1109/8.509882
12. Luebbers, , R., D. Steich, and K. Kunz, , "FDTD calculation of scattering from frequency-dependent materials," IEEE Trans. on Antennas and Propag., Vol. 41, No. 9, 1249-1257, 1993..
doi:10.1109/8.247751
13. Vial, A., , "Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the ¯nite-di®erence time domain method," J. Opt. A: Pure Appl. Opt., Vol. 9, No. 7, 745-748, 2007..
doi:10.1088/1464-4258/9/7/029
14. Sullivan, , D. M., , Electromagnetic Simulation Using the FDTD Method, IEEE Press, , 2000..
doi:10.1109/9780470544518
15. Weedon, , W. H., C. M. Rappaport, and , "A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media," IEEE Trans. on Antennas and Propag., Vol. 45, No. 3, 401-410, , 1997..
doi:10.1109/8.558655
16. Joseph, , R. M., S. C. Hagness, and A. Taflove, "Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses," Opt. Lett., Vol. 16, No. 18, 412-1414, 1991.
doi:10.1364/OL.16.001412
17. Okoniewski, , M., M. Mrozowski, and M. A. Stuchly, , "Simple treatment of multi-term dispersion in FDTD," IEEE Microw. Guided Wave Lett., Vol. 7, No. 5, Vol. 7, No. 5, 121-123, 1997..
doi:10.1109/75.569723
18. Vial, , A., T. Laroche, and , "Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method," J. Phys. D: Appl. Phys., Vol. 40, , No. 22, 7152-7158, 2007..
doi:10.1088/0022-3727/40/22/043
19. Okoniewski, , M., E. Okoniewska, and , "Drude dispersion in ADE FDTD revisited," Electron. Lett., Vol. 504, No. 9, 503-504, 2006..
doi:10.1049/el:20060328
20. Hulse, C., A. Knoesen, and , "Dispersive models for the ¯nite-di®erence time-domain method: Design, analysis, and implementation," J. Opt. Soc. Am. A,, Vol. 11, No. 6, 1802-1811, 1994.
doi:10.1364/JOSAA.11.001802
21. Lin, , Z., L. Thyln, and , "On the accuracy and stability of several widely used FDTD approaches for modeling lorentz dielectrics," IEEE Trans. on Antennas and Propag., Vol. 57, No. 10, 3378-3381, 2009..
doi:10.1109/TAP.2009.2029383
22. Pereda, , A., L. A. Vielva, A. Vegas, and A. Prieto, "Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz criterion," IEEE Trans. on Microw. Theory and Tech., Vol. 49, No. 2, 377-381, 2001..
doi:10.1109/22.903100
23. Johnson, , P. B., R. W. Christy, and , "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370, , 1972. .
doi:10.1103/PhysRevB.6.4370
24. Born, , M., E. Wolf, and , Principles of Optics: Electromagnetic Theory of Propagation,, 7th Ed., Interference and Diffraction of Light Cambridge University Press, 1999..