Vol. 135
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-12-25
PLRC and ADE Implementations of Drude-Critical Point Dispersive Model for the FDTD Method
By
Progress In Electromagnetics Research, Vol. 135, 373-390, 2013
Abstract
We describe the implementations of Drude-critical point model for describing dispersive media into finite difference time domain algorithm using piecewise-linear recursive-convolution and auxiliary differential equation methods. The advantages, accuracy and stability of both implementations are analyzed in detail. Both implementations were applied in studying the transmittance and reflectance of thin metal films, and excellent agreement is observed between analytical and numerical results.
Citation
Kyungwon Chun, Huioon Kim, Hyounggyu Kim, and Youngjoo Chung, "PLRC and ADE Implementations of Drude-Critical Point Dispersive Model for the FDTD Method," Progress In Electromagnetics Research, Vol. 135, 373-390, 2013.
doi:10.2528/PIER12112207
References

1. Ozbay, , E., , "Ozbay, E., Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, , No. 5758, 189-193, 2006.
doi:10.1126/science.1114849

2. Liaw, , J.-W., C.-S. Chen, and J.-H. Chen, "Plasmonic effect of gold nanospheroid on spontaneous emission," Progress In Electromagnetic Research B, Vol. 31, 283-296, 2011.

3. Smajic, J., C. Hafner, L. Raguin, K. Tavzarashvili, and M. Mishrikey, "Comparison of numerical methods for the analysis of plasmonic structures," J. Comput. Theor. Nanos., Vol. 6, No. 3, 763-774, 2009..
doi:10.1166/jctn.2009.1107

4. Taflove, , A., S. C. Hagness, and , Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House Publishers, 685 Canton Street, , 2005.

5. Lee, , K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on lorentz-drude dispersive model on GPU for plasmonics applications ," Progress In Electromagnetic Research, Vol. 116, 441-456, 2011.

6. Shahmansouri, , A. a and B. Rashidian, "GPU implementation of split-field definite-difference time-domain method for drude-lorentz dispersive media," Progress In Electromagnetic Research,, Vol. 125, 55-77, 2012.
doi:10.2528/PIER12010505

7. Etchegoin, , P. G., E. C. Le Ru, and M. Meyer, "An analytic model for the optical properties of gold," J. Chem. Phys., Vol. 125, No. 16, 164705-3, 2006.
doi:10.1063/1.2360270

8. Young, , J. L., R. O. Nelson, and , "A summary and systematic analysis of FDTD algorithms for linearly dispersive media," IEEE Antennas Propag. Mag., Vol. 43, No. 1, 61-126, 2001.
doi:10.1109/74.920019

9. Etchegoin, , P. G., E. C. Le Ru, and M. Meyer, , "Erratum: `An analytic model for the optical properties of gold' ," [J. Chem. Phys., 125, 164705, 2006], Vol. 127, No. 18, 189901-1, 2007.

10. Vial, , A., T. Laroche, and , "Comparison of gold and silver dispersion laws suitable for FDTD simulations," Appl. Phys. B, Vol. 93, No. 1, 139-143, , 2008.
doi:10.1007/s00340-008-3202-4

11. Kelley, , D. F., R. J. Luebbers, and , "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. on Antennas and Propag., Vol. 44, No. 6, 792-797, 1996.
doi:10.1109/8.509882

12. Luebbers, , R., D. Steich, and K. Kunz, , "FDTD calculation of scattering from frequency-dependent materials," IEEE Trans. on Antennas and Propag., Vol. 41, No. 9, 1249-1257, 1993..
doi:10.1109/8.247751

13. Vial, A., , "Implementation of the critical points model in the recursive convolution method for modelling dispersive media with the ¯nite-di®erence time domain method," J. Opt. A: Pure Appl. Opt., Vol. 9, No. 7, 745-748, 2007..
doi:10.1088/1464-4258/9/7/029

14. Sullivan, , D. M., , Electromagnetic Simulation Using the FDTD Method, IEEE Press, , 2000..
doi:10.1109/9780470544518

15. Weedon, , W. H., C. M. Rappaport, and , "A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media," IEEE Trans. on Antennas and Propag., Vol. 45, No. 3, 401-410, , 1997..
doi:10.1109/8.558655

16. Joseph, , R. M., S. C. Hagness, and A. Taflove, "Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses," Opt. Lett., Vol. 16, No. 18, 412-1414, 1991.
doi:10.1364/OL.16.001412

17. Okoniewski, , M., M. Mrozowski, and M. A. Stuchly, , "Simple treatment of multi-term dispersion in FDTD," IEEE Microw. Guided Wave Lett., Vol. 7, No. 5, Vol. 7, No. 5, 121-123, 1997..
doi:10.1109/75.569723

18. Vial, , A., T. Laroche, and , "Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method," J. Phys. D: Appl. Phys., Vol. 40, , No. 22, 7152-7158, 2007..
doi:10.1088/0022-3727/40/22/043

19. Okoniewski, , M., E. Okoniewska, and , "Drude dispersion in ADE FDTD revisited," Electron. Lett., Vol. 504, No. 9, 503-504, 2006..
doi:10.1049/el:20060328

20. Hulse, C., A. Knoesen, and , "Dispersive models for the ¯nite-di®erence time-domain method: Design, analysis, and implementation," J. Opt. Soc. Am. A,, Vol. 11, No. 6, 1802-1811, 1994.
doi:10.1364/JOSAA.11.001802

21. Lin, , Z., L. Thyln, and , "On the accuracy and stability of several widely used FDTD approaches for modeling lorentz dielectrics," IEEE Trans. on Antennas and Propag., Vol. 57, No. 10, 3378-3381, 2009..
doi:10.1109/TAP.2009.2029383

22. Pereda, , A., L. A. Vielva, A. Vegas, and A. Prieto, "Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurwitz criterion," IEEE Trans. on Microw. Theory and Tech., Vol. 49, No. 2, 377-381, 2001..
doi:10.1109/22.903100

23. Johnson, , P. B., R. W. Christy, and , "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, No. 12, 4370, , 1972. .
doi:10.1103/PhysRevB.6.4370

24. Born, , M., E. Wolf, and , Principles of Optics: Electromagnetic Theory of Propagation,, 7th Ed., Interference and Diffraction of Light Cambridge University Press, 1999..