Vol. 36
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-12-21
A Compact Ka-Band Broadband Waveguide-Based Traveling-Wave Spatial Power Combiner with Low Loss Symmetric Coupling Structure
By
Progress In Electromagnetics Research Letters, Vol. 36, 181-190, 2013
Abstract
A compact Ka-band broadband waveguide-based traveling-wave spatial power combiner is presented. The low loss micro-strip probes are symmetrically inserted into both broadwalls of waveguide, quadrupling the coupling ways but the insertion loss increases little. The measured 16 dB return-loss bandwidth of the eight-way back-to-back structure is from 30 GHz to 39.4 GHz (more than 25%) and the insertion loss is less than 1 dB, which predicts the power-combining efficiency is higher than 90%. Ka
Citation
Zhi-Yong Kang, Qing-Xin Chu, and Qiong Sen Wu, "A Compact Ka-Band Broadband Waveguide-Based Traveling-Wave Spatial Power Combiner with Low Loss Symmetric Coupling Structure," Progress In Electromagnetics Research Letters, Vol. 36, 181-190, 2013.
doi:10.2528/PIERL12111311
References

1. Chang , K. and C. Sun, "Millimeter-wave power-combining techniques," IEEE Trans. Microwave Theory & Tech., Vol. 31, No. 2, 91-107, Feb. 1983.
doi:10.1109/TMTT.1983.1131443

2. Jiang, X., S. C. Oritiz, and A. Mortazawi, "A Ka-band power amplifier based on the traveling-wave power-dividing/combining slotted-waveguide circuit," IEEE Trans. Microwave Theory & Tech., Vol. 52, No. 2, 633-639, Feb. 2004.
doi:10.1109/TMTT.2003.822026

3. Shapiro, E. S., J. Xu, A. S. Nagra, F. Williams, Jr., U. K. Mishra, and R. A. York, "A high-efficiency traveling-wave power amplifier topology using improved power-combining techniques," IEEE Microwave Guide Wave Lett., Vol. 8, No. 3, 133-135, Mar. 1998.
doi:10.1109/75.661139

4. Sanada, A., K. Fukui, S. Nogi, and M. Sanagi, "Traveling-wave microwave power divider composed of reflectionless dividing units," IEEE Trans. Microwave Theory & Tech., Vol. 43, No. 1, 14-20, Jan. 1995.
doi:10.1109/22.363014

5. Jiang, X., L. Liu, S. C. Ortiz, R. Bashirullah, A. Mortazawi, and , "A Ka-band power amplifier based on a low-profile slotted-waveguide power-combining/dividing circuit," IEEE Trans. Microwave Theory & Tech., Vol. 51, No. 1, 144-147, Jan. 2003.
doi:10.1109/TMTT.2002.806927

6. Li, L. A., B. J. Hilliard, J. R. Shafer, J. Daggett, E. J. Dickman, and J. P. Becker, "A planar compatible traveling-wave waveguide-based power divider/combiner," IEEE Trans. Microwave Theory & Tech., Vol. 56, No. 8, 1889-1898, Aug. 2008.
doi:10.1109/TMTT.2008.926555

7. Kang, Y. Z., Q. X. Chu, and Q. S. Wu, "A Ka-band waveguide-based traveling-wave spatial power divider/combiner," IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 5, 1-4, 2012.

8. Li, X.-Q., Q.-X. Liu, and J.-Q. Zhang, "loss multiport radial waveguide power divider," Progress In Electromagnetics Research Letters, Vol. 31, 189-198, 2012.
doi:10.2528/PIERL12011006

9. Huang, S., X. Xie, and B. Yan, "K band Wilkinson power divider based on a taper equation," Progress In Electromagnetics Research Letters,, Vol. 27, 75-83, 2011.
doi:10.2528/PIERL11080809

10. Olvera Cervantes, J. L., A. Corona-Chavez, R. Chavez-Perez, H. Lobato-Morales, J.-R. Ortega-Solis, and J.-L. Medina-Monroy, "A wideband quadrature power divider/combiner and its application to an improved balanced amplifier," Progress In Electromagnetics Research C, Vol. 34, 29-39, 2013.

11. Shih, Y. C., T. N. Ton, and L. Q. Bui, "Waveguide-to-microstrip transitions for millimeter-wave applications," IEEE MTT-S Int. Microwave Symp. Dig., Vol. 1, 473-475, May 2002.