Vol. 135
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-12-12
Enhancement of Wireless Power Transmission into Biological Tissues Using a High Surface Impedance Ground Plane
By
Progress In Electromagnetics Research, Vol. 135, 123-136, 2013
Abstract
The system which enhances wireless power transmission efficiency for bio-medical applications has been proposed in this report. The system that operates at giga-hertz ranges is based on an inductive coupling between a transmitter coil and a receiver coil. A magnetic current source was modeled to a magnetic dipole with magnetic dipole moment m. To increase wireless power transmission efficiency, a high surface impedance ground plane was used and reflection from the ground plane is responsible for constructive interference. For this system, a theoretical study has been performed in this report by solving Sommerfeld integrals. Compared with the result of a system without a ground plane, the system with a high surface impedance ground plane showed enhancement of received power at a given transmitted power.
Citation
Sung Il Park, "Enhancement of Wireless Power Transmission into Biological Tissues Using a High Surface Impedance Ground Plane," Progress In Electromagnetics Research, Vol. 135, 123-136, 2013.
doi:10.2528/PIER12110902
References

1. Akin, , T., K. Najafi, and R. M. Bradley, , "A wireless implantable multichannel digital neural recording system for a micromachined sieve electrode," IEEE Journal of Solid-State Circuits,, Vol. 33, 109-118, 1998.
doi:10.1109/4.654942

2. Liu, , W., K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes, E. McGucken, M. S. Humayun, E. DeJuan, J. D. Weiland, and R. Greenberf, "A neuro-stimulus chip with telemetry unit for retinal prosthetic device," IEEE Journal of Solid-State Circuits, Vol. 35, 1487-1497, 2000..
doi:10.1109/4.871327

3. Sauer, , C., M. Stanacevic, G. Cauwenberghs, and J. N. Thakor, "Power harvesting and telemetry in CMOS for implanted devices ," IEEE Trans. Circuit Syst. I, Vol. 52, 2605-2613, 2005.
doi:10.1109/TCSI.2005.858183

4. Baker, , M. W., R. Sarpeshkar, and , "Feedback analysis and design of RF power links for low-power bionic systems," IEEE Trans. Biomed. Circuits Syst., Vol. 1, 28-38, 2007.
doi:10.1109/TBCAS.2007.893180

5. Harrison, R., "Designing e±cient inductive power links for implantable devices," Proc. IEEE Intl. Symposium on Circuits and Systems, 2080-2083, 2007.

6. Neihart, , N. M., R. Harrison, and , "Micropower circuits for bidirectional wireless telemetry in neural recording applications," IEEE Trans. Biomed. Eng., Vol. 52, 1950-1959, 2005.
doi:10.1109/TBME.2005.856247

7. Smith, , S., T. Tang, J. Terry, J. T. M. Stevenson, B. W. Flynn, H. M. Reekie, A. F. Murray, A. M. Gundlach, D. Renshaw, B. Dhillon, and , "Development of a miniaturised drug delivery system with wireless power transfer and communication," IET Nanobiotechnology, Vol. 1, 80-86, 2007.
doi:10.1049/iet-nbt:20070022

8. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, 83-86, 2007.
doi:10.1126/science.1143254

9. Ramrakhyani, , A. K., S. Mirabbasi, and M. Chiao, "Design and optimization of resonance-based e±cient wireless power delivery systems for biomedical implants," IEEE Trans. Biomed. Circuits Syst., Vol. 5, 48-63, 2011.
doi:10.1109/TBCAS.2010.2072782

10. Poon, A. S. Y., S. O'Driscoll, and T. H. Meng, "Optimal frequency for wireless power transmission into dispersive tissue," IEEE Trans. Antennas Propagat., Vol. 58, 739-1749, 2010.
doi:10.1109/TAP.2010.2044310

11. Kim, , S., A. S. Y. Poon, and , "Wireless power transfer into miniature implants: Transmitter optimization," IEEE Trans. Antennas Propagat.,, Vol. 60, 4838-4845, 2012..
doi:10.1109/TAP.2012.2207341

12. Jackson, , J. D., Classical Electrodynamics, , 1999.

13. Cutler, , C. C., , "Genesis of the corrugated electromagnetic surface," IEEE Int. Antennas Propagat. Symp. Dig., Vol. 32, 1456-1459, 1944.

14. Sievenpiper, , D. F., , "High-impedance electromagnetic surfaces," Ph.D. Dissertation,, 1999.

15. Gabriel, , S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

16. Vorst, A. V., , RF/Microwave Interaction with Biological Tissues,, Wiley-IEEE Press, 2006.

17. Chew, , W. C., , Waves and Fields in Inhomogeneous Media, Wiley-IEEE Press, 1995.

18. Andersen, J. B., "Theoretical limitations on radiation into muscle tissue," Int. J. Hyperthermia,, Vol. 1, 45-55, 1985..
doi:10.3109/02656738509029273

19. Lowery, , M. M., N. S. Stoykov, A. Taflove, and T. A. Kuiken, "A multiple-layer ¯finite-element model of the surface EMG signal," IEEE Trans. Biomed. Eng., Vol. 49, 446-454, , 2002.
doi:10.1109/10.995683

20. Sommerfeld, , A., "Partial Differential Equations in Physics," Academic Press, 1949.

21. "IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz," IEEE Standard C95.1-2005, 2006.

22. Wise, , K. D., A. M. Sodagar, Y. Yao, M. N. Gulari, G. E. Perlin, and K. Najafi, "Microelectrodes, microelectronics, and implantable neural microsystems," Proc. IEEE,, Vol. 96, 1184-1202, 2008.
doi:10.1109/JPROC.2008.922564