1. Wehner, D. R., High-resolution Radar, Chapter 4-Chapter 5, Artech House, Boston, 1995.
2. Xu, H.-Y., H. Zhang, K. Lu, X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011.
3. Park, S.-H., H.-T. Kim, and K.-T. Kim, "Stepped-frequency ISAR motion compensation using particle swarm optimization with an island model," Progress In Electromagnetics Research, Vol. 85, 25-37, 2008.
doi:10.2528/PIER08082107
4. Chua, M. Y. and V. C. Koo, "FPGA-based chirp generator for high resolution UAV SAR," Progress In Electromagnetics Research, Vol. 99, 71-88, 2009.
doi:10.2528/PIER09100301
5. Crowgey, B. R., E. J. Rothwell, L. C. Kempel, and E. L. Mokole, "Comparison of UWB short-pulse and stepped-frequency radar systems for imaging through barriers," Progress In Electromagnetics Research, Vol. 110, 403-419, 2010.
doi:10.2528/PIER10091306
6. Zhai, W. and Y. Zhang, "Application of super-SVA to stepped chirp radar imaging with frequency band gaps between subchirps," Progress In Electromagnetics Research B, Vol. 30, 71-82, 2011.
7. Liu, B. and W. Chang, "A novel range-spread target detection approach for frequency stepped chirp radar," Progress In Electromagnetics Research, Vol. 131, 275-292, 2012.
8. Hao, C., F. Bandiera, J. Yang, D. Orlando, S. Yan, and C. Hou, "Adaptive detection of multiple point-like targets under conic constraints ," Progress In Electromagnetics Research, Vol. 129, 231-250, 2012.
9. Han, S.-K., H.-T. Kim, S.-H. Park, and K.-T. Kim, "Efficient radar target recognition using a combination of range profile and time-frequency analysis ," Progress In Electromagnetics Research, Vol. 108, 131-140, 2010.
doi:10.2528/PIER10071601
10. Fu, J.-S. and W.-L. Yang, "KFD-based multiclass synthetical discriminant analysis for radar HRRP recognition," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 169-178, 2012.
doi:10.1163/156939312800030947
11. Zhou, D., X. Shen, and Y. Liu, "Nonlinear subprofile space for radar HRRP recognition," Progress In Electromagnetics Research Letters, Vol. 33, 91-100, 2012.
12. Zhu, F., Q. Zhang, Q. Lei, and Y. Luo, "Reconstruction of moving target's HRRP using sparse frequency-stepped chirp signal," IEEE Sensors Journal, Vol. 11, No. 10, 2327-1334, 2011.
doi:10.1109/JSEN.2011.2136375
13. Chen, H.-Y., Y.-X. Liu, W.-D. Jiang, and G.-R. Guo, "A new approach for synthesizing the range profile of moving targets via stepped-frequency waveforms," IEEE Geoscience and Remote Sensing Letters, Vol. 3, No. 3, 406-409, 2006.
doi:10.1109/LGRS.2006.873874
14. Li, G., H. D. Meng, X. G. Xia, and Y. N. Peng, "Range and velocity estimation of moving targets using multiple stepped-frequency pulse trains," Sensors, Vol. 8, 1343-1350, 2008.
doi:10.3390/s8021343
15. Liu, Y. M., H. D. Meng, H. Zhang, and X. Q. Wang, "Motion compensation of moving targets for high range resolution stepped-frequency radar," Sensors, Vol. 8, 3429-3437, 2008.
doi:10.3390/s8053429
16. Park, S.-H., J.-I. Park, and K.-T. Kim, "Motion compensation for squint mode spotlight SAR imaging using efficient 2D interpolation," Progress In Electromagnetics Research, Vol. 128, 503-518, 2012.
17. Kirkland, D. M., "An alternative range migration correction algorithm for focusing moving targets," Progress In Electromagnetics Research, Vol. 131, 227-241, 2012.
18. Tao, R., N. Zhang, and Y. Wang, "Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar," IET Radar Sonar and Navigation, Vol. 5, No. 1, 12-22, 2011.
doi:10.1049/iet-rsn.2009.0265
19. Levanon, N., "Stepped-frequency pulse-train radar signal," IEE Proceedings Radar, Sonar and Navigation, Vol. 149, No. 6, 297-309, 2002.
doi:10.1049/ip-rsn:20020432
20. Sun, H. X., Z. Liu, and Y. H. Cao, "Estimation of a high-velocity target's motion parameters for a modulated frequency stepped radar," Journal of Xidian University, Vol. 38, No. 1, 136-141, 2011.
21. Moore, T. A., et al. "Use of the GPS aided inertial navigation system in the navy standard missile for the BMDO/Navy LEAP technology demonstration program," Proceedings of ION GPS-95, Palm Springs, CA, September 12-15, 1995.
22. Ma, Y.-B., Velocity compensation in stepped frequency radar, Master's Thesis, Naval Postgraduate School, California, USA, 1995.
23. Calvo-Gallego, J. and F. Pérez-Martínez, "Simple traffic surveillance system based on range-Doppler radar images," Progress In Electromagnetics Research, Vol. 125, 343-364, 2012.
doi:10.2528/PIER12011809
24. Stimson, G. W., Introduction to Airborne Radar, 2nd Ed., Ch. 15, SciTech Publishing, Inc., Raleigh, 1998.
25. Tian, B., D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.
26. Martyushev, L. M. and V. D. Seleznev, "Maximum entropy production principle in physics, chemistry and biology," Physics Reports, Vol. 426, 1-10, 2006.
doi:10.1016/j.physrep.2005.12.001
27. Xi, L., "Auto focusing of ISAR images based on entropy minimization," IEEE Trans. on Aerospace Electron. Syst., Vol. 35, No. 4, 1240-1252, 1999.
doi:10.1109/7.805442
28. Jing, L., L. X. Guo, and W.Wu, "Application of waveform entropy method for motion compensation to MMW costas frequency hopped radar ," Journal of Infrared and Millimeter Wave, Vol. 22, No. 4, 303-306, 2003.
29. Xu, S., P. Shui, and X. Yan, "CFAR detection of range-spread target in white Gaussian noise using waveform entropy," Electronics Letters, Vol. 46, No. 9, 647-649, 2010.
doi:10.1049/el.2010.3329
30. Zhang, Z.-B., X.-Y. Du, and W.-D. Hu, "Waveform entropy-based target detection in HRRPs," Aeronautical Computing Technique, Vol. 37, No. 6, 51-54, 2007.
31. Zhang, J.-P., Z.-S. Wu, Y.-S. Zhang, and B. Wang, "Evaporation duct retrieval using changes in radar sea clutter power versus receiving height," Progress In Electromagnetics Research, Vol. 126, 555-571, 2012.
doi:10.2528/PIER11121307
32. Wu, Z.-S., J.-P. Zhang, L.-X. Guo, and P. Zhou, "An improved two-scale model with volume scattering for the dynamic ocean surface," Progress In Electromagnetics Research, Vol. 89, 39-56, 2009.
doi:10.2528/PIER08111803
33. Luo, W., M. Zhang, C. Wang, and H.-C. Yin, "Investigation of low-grazing-angle microwave backscattering from three-dimensional breaking sea waves," Progress In Electromagnetics Research, Vol. 119, 279-298, 2011.
doi:10.2528/PIER11062607
34. Qi, C., Z. Zhao, W. Yang, Z.-P. Nie, and G. Chen, "Electromagnetic scattering and doppler analysis of three-dimensional breaking wave crests at low-grazing angles," Progress In Electromagnetics Research, Vol. 119, 239-252, 2011.
doi:10.2528/PIER11062401