Vol. 136
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-17
Linear Polarization Sum Imaging in Passive Millimeter-Wave Imaging System for Target Recognition
By
Progress In Electromagnetics Research, Vol. 136, 175-193, 2013
Abstract
In passive millimeter-wave imaging systems used indoors, the radiometric temperature contrast is barely enough for coarse object detection, being usually insufficient for recognition due to the absence of cold sky. The image contrast results from a combination of emissivity and reflectivity which are dependent on the dielectric constant of objects, the angle of incidence, and the polarization direction. To improve the capability of target recognition, we proposed the linear polarization sum imaging method which is based on the combination of the different polarization images for increasing the intensity contrast between the target area and the background area. In order to capture the linear polarization sum images of a metal sphere, a metal and a ceramic cup, we designed W-band quasi-optical imaging system which can generate the polarization dependent images by manually changing the linear polarization direction of its radiometer receiver from 0 to π /2 by the step size of π/8. The theoretical and experimental results of the linear polarization sum imaging show that it is capable for achieving good image quality enough to recognize the target.
Citation
Won-Gyum Kim, Nam-Won Moon, Hwang-Kyeom Kim, and Yong-Hoon Kim, "Linear Polarization Sum Imaging in Passive Millimeter-Wave Imaging System for Target Recognition," Progress In Electromagnetics Research, Vol. 136, 175-193, 2013.
doi:10.2528/PIER12110709
References

1. Yeom, S., D. S. Lee, H. Lee, J. Y. Son, and V. P. Guschin, "Distance estimation of concealed objects with stereoscopic passive millimeter-wave imaging," Progress In Electromagnetics Research, Vol. 115, 399-407, 2011.

2. Wikner, D. A. and A. R. Luukanen, Passive Millimeter-wave Imaging Technology XIV, Orlando, Florida, United States, SPIE, Bellingham, Wash., Apr. 28, 2011.

3. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Volume I: Fundamentals and Radiometry, Artech House Publishers, 1981.

4. Lynch, J. J., H. P. Moyer, J. H. Scha®ner, Y. Royter, M. Sokolich, B. Hughes, Y. J. Yoon, and J. N. Schulman, "Passive millimeter-wave imaging module with preamplified zero-bias detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 1592-1600, Jul. 2008.
doi:10.1109/TMTT.2008.924361

5. Zhang, G. F., X. G. Li, and G. W. Lou, "Research on passive MMW imaging based on an alternating current radiometer," Journal of Infrared and Millimeter Waves, Vol. 26, 461-464, Dec. 2007.

6. Qi, F., V. Tavakol, D. Schreurs, and B. Nauwelaers, "Limitations of approximations towards fourier optics for indoor active millimeter wave imaging systems," Progress In Electromagnetics Research, Vol. 109, 245-262, 2010.
doi:10.2528/PIER10080510

7. Zhang, L. X., J. Stiens, A. Elhawil, and R. Vounckx, "Multispectral illumination and image processing techniques for active millimeter-wave concealed object detection," Applied Optics, Vol. 47, 6357-6365, Dec. 1, 2008.
doi:10.1364/AO.47.006357

8. Salmon, N. A., R. Appleby, and P. Coward, "Polarimetric passive millimetre wave imaging," International Conference on Microwave and Millimeter Wave Technology Proceedings, 540-543, Aug. 2002.

9. Duric, A., A. Magun, A. Murk, C. Matzler, and N. Kampfer, "The ully polarimetric imaging radiometer SPIRA at 91 GHz," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, 2323-2336, Aug. 2008.
doi:10.1109/TGRS.2008.917212

10. Stahli, O., C. Matzler, A. Murk, and N. Kampfer, "Sky measurements with the imaging polarimeter SPIRA at 91 GHz," Microwave Radiometry and Remote Sensing of the Environment, 181-186, Mar. 2010.

11. Sugimoto, M. and K. Ouchi, "Extraction of laver cultivation area using SAR dual polarization data," PIERS Proceedings, 952-956, Moscow, Russia, Aug. 19-23, 2012.

12. Liao, S. L., N. Gopalsami, T. W. Elmer, E. R. Koehl, A. Heifetz, K. Avers, E. Dieckman, and A. C. Raptis, "Passive millimeter-wave dual-polarization imagers," IEEE Transactions on Instrumentation and Measurement, Vol. 61, 2042-2050.
doi:10.1109/TIM.2012.2183032

13. Shao, W. and R. S. Adams, "Multi-polarized microwave power imaging algorithm for early breast cancer detection," Progress In Electromagnetics Research M, Vol. 23, 93-107, 2012.
doi:10.2528/PIERM11082510

14. Teng, H. T., H. T. Ewe, and S. L. Tan, "Multifractal dimension and its geometrical terrain properties for classification of multiband multi-polarized SAR image," Progress In Electromagnetics Research, Vol. 104, 221-237, 2010.
doi:10.2528/PIER10022001

15. Miller, D. A. and E. L. Dereniak, "Selective polarization imager for contrast enhancements in remote scattering media," Applied Optics, Vol. 51, 4092-4102, Jun. 20, 2012.
doi:10.1364/AO.51.004092

16. Sutkowski, M., P. Garbat, J. Parka, A. Walczak, E. Nowinowski-Kruszelnicki, and J. Woznicki, "Polarization difference imaging system with LC filter," Molecular Crystals and Liquid Crystals, Vol. 495, 403-411, 2008.
doi:10.1080/15421400802430406

17. Jiang, X. Y., N. Zeng, Y. H. He, and H. Ma, "Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles," Progress In Biochemistry and Biophysics, Vol. 34, 659-663, 2007.

18. Thakur, J. P., W. G. Kim, and Y. H. Kim, "Large aperture low aberration aspheric dielectric lens antenna for W-band quasi-optics," Progress In Electromagnetics Research, Vol. 103, 57-65, 2010.
doi:10.2528/PIER10022404

19. Kim, W. G., N. W. Moon, J. M. Kang, and Y. H. Kim, "Loss measuring of large aperture quasi-optics for W-band imaging radiometer system," Progress In Electromagnetics Research, Vol. 125, 295-309, 2012.
doi:10.2528/PIER12010502

20. Jaeger, I., L. Zhang, J. Stiens, H. Sahli, and R. Vounckx, "Millimeter wave inspection of concealed objects," Microwave and Optical Technology Letters, Vol. 49, 2733-2737, 2007.
doi:10.1002/mop.22870