Vol. 136
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-16
Radiation Analysis of Large Antenna Array by Using Periodic Equivalence Principle Algorithm
By
Progress In Electromagnetics Research, Vol. 136, 43-59, 2013
Abstract
In this paper, an improved equivalence principle algorithm is proposed to solve the radiation problems of large antenna arrays with periodic structures. This method is a hybridization in which the typical scheme of periodic Green's function is combined with the original equivalence principle algorithm. The repeated elements are changed from the original antenna units into the surfaces enclosing the original ones. The proposed approach is compared with periodic method of moments which is based on the integral equation and the periodic Green's function. Numerical results validate the feasibility of the improved method.
Citation
Kaizhi Zhang, Jun Ou Yang, Feng Yang, Chuan Wu, Yan Li, and Jian Zhang, "Radiation Analysis of Large Antenna Array by Using Periodic Equivalence Principle Algorithm," Progress In Electromagnetics Research, Vol. 136, 43-59, 2013.
doi:10.2528/PIER12110507
References

1. Su, J. X., X. W. Xu, M. He, and K. Zhang, "Integral-equation analysis of frequency selective surfaces using Ewald transformation and lattice symmetry," Progress In Electromagnetics Research, Vol. 121, 249-269, 2011.
doi:10.2528/PIER11081902

2. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Design of narrow band-pass frequency selective surfaces for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
doi:10.2528/PIER09081702

3. Wan, J. X., J. Lei, and C. H. Liang, "An efficient analysis of large-scale periodic microstrip antenna arrays using characteristic basis funciton method," Progress In Electromagnetics Research, Vol. 50, 61-81, 2005.
doi:10.2528/PIER04050901

4. Peng, Z. and J.-F. Lee, "Non-conformal domain decomposition method with mixed true second order transmission condition for solving large finite antenna arrays," IEEE Trans. Antenn. Propaga., Vol. 59, No. 5, Aug. 2011.

5. Xia, L., C.-F.Wang, L.-W. Li, P.-S. Kooi, and M.-S. Leong, "Resonant behaviours of microstrip antenna in multilayered media: An efficient fullwave analysis," Progress In Electromagnetics Research, Vol. 31, 55-67, 2011.

6. La Cono, G., R. Gardelli, M. Albani, and A. Freni, "An efficient full-wave-MOM for RLSA antennas," IEEE Antennas and Propagation Society International Symposium, Vol. 3A, 118-121, Jul. 2005.

7. Lim, C.-P., "Method of moments analysis of electrically large thin square and rectangular loop antennas: Near-and-far-zone field," Progress In Electromagnetics Research, Vol. 34, 117-141, 2001.
doi:10.2528/PIER01042402

8. Trujillo-Romero, C. J., L. Leija, and A. Vera, "FEM modeling for performance evaluation of an electromagnetic oncology deep hyperthermia applicator when using monopole inverted T, and plate antennas," Progress In Electromagnetics Research, Vol. 120, 99-125, 2011.

9. Lei, J.-Z., C.-H. Liang, W. Ding, and Y. Zhang, "EMC analysis of antennas mounted on electrically large platforms with parallel FDTD method," Progress In Electromagnetics Research, Vol. 84, 205-220, 2008.
doi:10.2528/PIER08071303

10. Yang, S. W., Y. K. Chen, and Z. P. Nie, "Simulation of time modulated linear antenna array using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.
doi:10.2528/PIER09092507

11. McGrath, D. T. and V. P. Pyati, "Periodic boundary conditions for finite element analysis of infinite phased array antennas," IEEE Antenna and Propagation Society International Symposium, Vol. 3, 1502-1505, 1994.

12. Mahachoklertwattana, P., P. H. Pathak, C.-F. Wang, and Y.-B. Gan, "A fast MOM solution for large finite planar periodic arrays with non-rectangular element truncation boundaries," IEEE APMC, 1-4, 2007.

13. Holter, H. and H. Steyskal, "Broadband FDTD analysis of infinite phased arrays using periodic boundary conditions," Electronics Letters, 758-759, 1999.
doi:10.1049/el:19990553

14. Barlevy, A. S. and Y. Rahmat-Samii, "Characteristics of electromagnetic band-gaps composed of multiple periodic tripods with interconnecting vias: Concept, analysis and design," IEEE Trans. Antenn. Propaga., Vol. 49, No. 3, Mar. 2001.

15. Su, J., J., X. Xu, and M. He, "Hybrid PMM-MOM method for analyzing the RCS of finite array," IEEE International Conference on Information Science and Technology, 532-535, 2011.

16. Guerin, N., C. Craeye, and X. Dardenne, "Accelerated computation of the free space Green's function gradient of infinite phased arrays of dipoles ," IEEE Trans. Antenn. Propaga., Vol. 57, No. 10, Oct. 2009.

17. Dardenne, X. and C. Craeye, "Method of moments simulation of infinitely periodic structures combining metal with connected dielectric objects," IEEE Trans. Antenn. Propaga., Vol. 56, No. 8, Aug. 2008.

18. Shubair, R. M. and Y. L. Chow, "Efficient computation of the periodic Green's function in layered dielectric media," IEEE Trans. Antenn. Propaga., Vol. 41, No. 3.

19. Miura, A. and Y. Rahmat-Samii, "RF characteristics of spaceborne antenna mesh reflecting surfaces: Application of periodic method of moments ," IEEE Antenna and Propagation Society International Symposium, Vol. 3A, 375-378, 2005.

20. Bahadori, H., H. Alaeian, and R. Faraji-Dana, "Computation of periodic Green's functions in layered media using complex images technique," Progress In Electromagnetics Research, Vol. 112, 225-240, 2011.

21. Stevanovic, I. and J. R. Mosig, "Green's functions for planar structures in periodic skewed 2-D lattices using Ewald transformation," IEEE EuCAP, 1-6, 2006.

22. Li, M.-K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Trans. Antenn. Propaga., Vol. 55, No. 1, 130-138, Jan. 2007.
doi:10.1109/TAP.2006.888453

23. Sun, L.-E., M.-K. Li, and W. C. Chew, "Applying the low frequency technique to the equivalence principle algorithm," Antenna and Propagation Society International Symposium, 1-4, 2009.

24. Li, M. K. and W. C. Chew, "A domain decomposition scheme based on equivalence theorem," Micro. Opt. Tech. Lett., Vol. 48, No. 9, 1853-1857, Sep. 2006.
doi:10.1002/mop.21777

25. Shao, H., J. Hu, Z. Nie, G. Han, and S. He, "Hybrid tangential equivalence principle algorithm with MLFMA for analysis of array structures ," Progress In Electromagnetics Research, Vol. 113, 127-141, 2011.

26. Yla-Oijala, P. and M. Taskinen, "Solving electromagnetic scattering by large and complex structures with surface equivalence principle algorithm," Waves in Random and Complex Media, Vol. 19, No. 1, Feb. 2009.
doi:10.1080/17455030802585365

27. Yla-Oijala, P. and M. Taskinen, "Solving electromagnetic scattering by multiple targets with surface equivalence principle algorithm," 3rd European Conference on Antenna and Propagation, 88-92, Mar. 2009.

28. Li, M.-K. and W. C. Chew, "Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme," IEEE Trans. Antenn. Propaga., Vol. 56, No. 8, 2389-2397, Aug. 2008.
doi:10.1109/TAP.2008.926785

29. Ouyang, J., F. Yang, S. W. Yang, and Z. P. Nie, "Exact simulation method VSIE+MLFMA for analysis radiation pattern of probe-feed conformal microstrip antenna and the application of synthesis radiation pattern of conformal array mounted on finite-length PEC circular cylinder with DES," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1995-2008, 2007.
doi:10.1163/156939307783152803

30. Luo, W., S. Yang, and Z. Nie, "A wideband and dual polarization base station antenna for IMT-advanced system," Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, Vol. 1, 483-486, 2011.
doi:10.1109/CSQRWC.2011.6036990