Vol. 40
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-05-11
One-Step Leapfrog Adi-FDTD Method for Lossy Media and Its Stability Analysis
By
Progress In Electromagnetics Research Letters, Vol. 40, 49-60, 2013
Abstract
A one-step leapfrog alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method for lossy media is presented. Different from the method provided by others, the proposed method is originated from the conventional ADI-FDTD method instead of considering the leapfrog ADI-FDTD method as a perturbation of the conventional explicit FDTD method. Its unconditional stability is analytically proven through a method that combines the von Neumann method with the Jury criterion. In addition, its unconditional stability and computational efficiency are verified through numerical experiments.
Citation
Jian-Yun Gao, and Hong-Xing Zheng, "One-Step Leapfrog Adi-FDTD Method for Lossy Media and Its Stability Analysis," Progress In Electromagnetics Research Letters, Vol. 40, 49-60, 2013.
doi:10.2528/PIERL12110213
References

1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, 2005.

2. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 10, 2003-2007, Oct. 1999.

3. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three dimensional unconditionally stable finite-different time-domain method," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 9, 1550-1558, Sep. 2000.

4. Cooke, S. J., M. Botton, T. M. Antonsen, and B. Levush, "A leapfrog formulation of the 3D ADI-FDTD algorithm," Int. J. Numer. Model,, Vol. 22, No. 2, 187-200, 2009.

5. Yang, S. C., Z. Chen, Y. Yu, and W. Y. Yin, "An unconditionally stable one-step arbitrary-order leapfrog ADI-FDTD method and its numerical properties," IEEE Trans. Antennas Propag.,, Vol. 60, No. 4, 1995-2003, Apr. 2012.

6. Gan, T. H. and E. L. Tan, "Stability and dispersion analysis for three-dimensional (3-D) leapfrog ADI-FDTD method," Progress In Electromagnetics Research M, Vol. 23, 1-12, Jan. 2012.

7. Heh, D. Y. and E. L. Tan, "Dispersion analysis of FDTD schemes for doubly lossy media," Progress In Electromagnetics Research B, Vol. 14, 177-192, 2010.

8. Velarde, L. F., J. A. Pereda, A. Vegas, and O. Gonzalez, "A weighted-average scheme for accurate FDTD modeling of electromagnetic wave propagation in conductive media," IEEE Antennas Wireless Propag. Lett., Vol. 3, 302-305, 2004.

9. Pereda, J. A., A. Grande, O. Gonzalez, and A. Vegas, "The 1D ADI-FDTD method in lossy media," IEEE Antennas Wireless Propag. Lett., Vol. 7, 477-480, 2008.

10. Heh, D. Y. and E. L. Tan, "Unified efficient fundamental ADI-FDTD schemes for lossy media," Progress In Electromagnetics Research B, Vol. 32, 217-242, 2011.

11. Gan, T. H. and E. L. Tan, "Unconditionally stable leapfrog ADI-FDTD method for lossy media," Progress In Electromagnetics Research M, Vol. 26, 173-186, 2012.

12. Xiao, F. and X. H. Tang, "Stability and numerical dispersion analysis of a fourth-order accurate FDTD method," IEEE Trans. Antennas Propag., Vol. 54, No. 9, 2525-2530, Sep. 2006.