Vol. 36
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-12-24
A Novel Bandpass Filter of Substrate Integrated Waveguide (SIW) Based on S-Shaped EBG
By
Progress In Electromagnetics Research Letters, Vol. 36, 191-200, 2013
Abstract
A novel S-shaped electromagnetic band gap (EBG) middling bandwidth bandpass filter based on substrate integrated waveguide (SIW) was proposed. The filter was designed based on the band-stop characteristics of EBG by etching different dimensional S-shaped on the surface of substrate integrated waveguide. The bandpass filter with a center frequency at 7.765 GHz and relative fractional bandwidth 7.31% shows good bandpass characteristics with frequency band between 7.38~7.94 GHz, while the insertion loss is less than 1.6 dB and achieve middling bandwidth in SIW by EBG and has the advantage of bandpass, low insertion loss, compacted and good selectivity etc. The good agreement between the measured results and the simulated results demonstrates that the design of this proposed filter is effective.
Citation
Dan Li, Chuang-Ming Tong, Jun-Song Bao, Peng Peng, and Ding-Wang Yu, "A Novel Bandpass Filter of Substrate Integrated Waveguide (SIW) Based on S-Shaped EBG," Progress In Electromagnetics Research Letters, Vol. 36, 191-200, 2013.
doi:10.2528/PIERL12110202
References

1. Radisic, V. and Y.-X. Qian, "Novel 2-D photonic bandgap structure for microstrip lines," IEEE Microwave and Guided Wave Letter, Vol. 8, No. 2, 69-71, 1998.
doi:10.1109/75.658644

2. Fu, Y. Q., "Electormagnetic characteristics of microwave photonic crystals and applications,", A Dissertation of the Degree of Doctor in School of Electronic Science and Engineering, National University of Defense Technology, 6-10, 2004.

3. Fu, S.-H., "Electromagnetic metamaterial and its application to microwave filters,", A Dissertation Submitted to Air Force Engineering University in Candidacy for Degree of Doctor of Engineering, 8-18, 2011.

4. Wu, K., D. Deslandes, and Y. Cassivi, "The substrate integrated circuits --- A new concept for high-frequency electronics and optoeletronics," Proc. 6th Telecommunications in Modern Satellite, Cable and Broadcasting Service, Vol. 1, P-III-P-X, Oct. 2003.

5. Yan, L., W. Hong, G. Hua, J. X. Chen, K. Wu, and T. J. Cui, "Simulation and experiment on SIW slot array antennas," IEEE Microw. Wireless Comp. Lett., Vol. 14, No. 9, 446-448, Sep. 2004.
doi:10.1109/LMWC.2004.832081

6. Yan, L., W. Hong, K. Wu, and T. J. Cui, "Investigations on the propagation characteristics of SIW," Proc. Inst. Elect. Eng. Microw., Antennas, Propag., Vol. 152, No. 1, 35-42, Feb. 2005.
doi:10.1049/ip-map:20040726

7. Xu, F., Y. L. Zhang, W. Hong, K. Wu, and T. J. Cui, "Finite difference frequency domain algorithm for modeling guided-wave properties of substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 11, 2221-2227, Nov. 2003.

8. Hsu, H. J., M. J. Hill, R. W. Ziolkowski, and J. Papapolymerou, "Aduroid-based planar EBG cavity resonator filter with improved quality factor," IEEE Antennas Wireless Propag. Lett., Vol. 1, 67-70, 2002.

9. Simpson, J. J., A. Taflove, J. A. Mix, and H. Heck, "Computational and experimental study of a microwave electromagnetic bandgap structure with waveguiding defect for potential use as a bandpass wireless interconnect," IEEE Microw. Wireless Comp. Lett., Vol. 14, No. 7, 343-345, Jul. 2004.
doi:10.1109/LMWC.2004.829283

10. Hao, Z.-C., "Compact super-wide bandpass substrate integrated waveguide (SIW) filters," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 9, 2938-2977, 2005.

11. Chen, S.-Y., "Substrate integrated waveguide bandpass filter based on butterfly radial slot," Journal of Chongqing University of Technology, Vol. 34, No. 6, 127-131, 2011.

12. Tian, S.-L., "Bandpass filter of substrate integrated waveguide and band gap structure," Journal of Chongqing University of Technology, Vol. 24, No. 6, 52-55, 2010.

13. Fernandes, E. N. R. Q., et al. "A neural network modeling ofmi-crowave circuits on PBG structures," IEEE MTT-S International Microwave Symposium Digest,, Vol. 1, 181-184, 2003.

14. Kyriazidou, C. A., H. F. Contopanagos, et al. "Monolithic waveguide filters usingprinted photonic-bandgap materials," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 2, 297-307, 2001.
doi:10.1109/22.903089

15. Kretly, L. C. and A. Tavora, "A PBG-photonic band gap-static phase-shifter for steerable antenna array," SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings, Vol. 1, 211-214, 2003.

16. Clavijo, S., R. E. Diaz, and W. E. McKinzie, "Design methodology for Sievenpiper high-impedance surfaces: An artificial magnetic conductor for positive gain electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2678-2690, 2003.
doi:10.1109/TAP.2003.817575

17. Kim, T. and C. Seo, "A novel photonic bandgap structure for low-pass filter of wide stopband," IEEE Microwave and Guided Wave Letter, Vol. 10, No. 1, 13-15, 2000.
doi:10.1109/75.842072