Vol. 48
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-01-16
Two Efficient Unconditionally-Stable Four-Stages Split-Step FDTD Methods with Low Numerical Dispersion
By
Progress In Electromagnetics Research B, Vol. 48, 1-22, 2013
Abstract
Two efficient unconditionally-stable four-stages split-step (SS) finite-difference time-domain (FDTD) methods based on controlling parameters are presented, which provide low numerical dispersion. Firstly, in the first proposed method, the Maxwell's matrix is split into four sub-matrices. Simultaneously, two controlling parameters are introduced to decrease the numerical dispersion error. Accordingly, the time step is divided into four sub-steps. The second proposed method is obtained by adjusting the sequence of the sub-matrices deduced in the first method. Secondly, the theoretical proofs of the unconditional stability and dispersion relations of the proposed methods are given. Furthermore, the processes of obtaining the controlling parameters for the proposed methods are shown. Thirdly, the dispersion characteristics of the proposed methods are also investigated, and numerical dispersion errors of the proposed methods can be decreased significantly. Finally, to substantiate the efficiency of the proposed methods, numerical experiments are presented.
Citation
Yong-Dan Kong, Qing-Xin Chu, and Rong-Lin Li, "Two Efficient Unconditionally-Stable Four-Stages Split-Step FDTD Methods with Low Numerical Dispersion," Progress In Electromagnetics Research B, Vol. 48, 1-22, 2013.
doi:10.2528/PIERB12103011
References

1. Taflove, A. and S. C. Hagness, Computational Electrodynamics --- The Finite-difference Time-domain Method, 2nd Ed., Artech House, Boston, MA, 2000.

2. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, May 1966.

3. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 10, 2003-2007, Oct. 1999.
doi:10.1109/22.795075

4. Zheng, F. H., Z. Z. Chen, and J. Z. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 9, 1550-1558, Sep. 2000.
doi:10.1109/22.868993

5. Zheng, F. H. and Z. Z. Chen, "Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 5, 1006-1009, May 2001.
doi:10.1109/22.920165

6. Ahmed, I. and Z. Z. Chen, "Error reduced ADI-FDTD methods," IEEE Antennas Wireless Propag. Lett., Vol. 4, 323-325, 2005.
doi:10.1109/LAWP.2005.855630

7. Wang, S. M., F. L. Teixeira, and J. Chen, "An iterative ADI-FDTD with reduced splitting error," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 2, 92-94, Feb. 2005.
doi:10.1109/LMWC.2004.842835

8. Kong, K. B., J. S. Kim, and S. O. Park, "Reduced splitting error in the ADI-FDTD method using iterative method," Microwave Optical Technol. Lett., Vol. 50, No. 8, 2200-2203, Aug. 2008.
doi:10.1002/mop.23618

9. Wang, M. H., Z. Wang, and J. Chen, "A parameter optimized ADI-FDTD method," IEEE Antennas Wireless Propag. Lett., Vol. 2, No. 1, 118-121, 2003.
doi:10.1109/LAWP.2003.815283

10. Sun, M. K. and W. Y. Tam, "Low numerical dispersion two-dimensional (2, 4) ADI-FDTD method," IEEE Trans. Antennas Propag., Vol. 54, No. 3, 1041-1044, Mar. 2006.
doi:10.1109/TAP.2006.869940

11. Fu, W. and E. L. Tan, "A parameter optimized ADI-FDTD method based on the (2, 4) stencil," IEEE Trans. Antennas Propag., Vol. 54, No. 6, 1836-1842, Jun. 2006.
doi:10.1109/TAP.2006.875512

12. Ahmed, I. and Z. Z. Chen, "Dispersion-error optimized ADI-FDTD," Proc. IEEE MTT-S Int. Microw. Symp. Dig., 173-176, Jun. 2006.

13. Zhao, A. P., "Improvement on the numerical dispersion of 2-D ADI-FDTD with artificial anisotropy," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 6, 292-294, Jun. 2004.
doi:10.1109/LMWC.2004.828002

14. Zheng, H. X. and K. W. Leung, "An efficient method to reduce the numerical dispersion in the ADI-FDTD," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 7, 2295-2301, Jul. 2005.
doi:10.1109/TMTT.2005.850441

15. Zhang, Y. and S. W. Lv, "Genetic algorithm in reduction of numerical dispersion of 3-D alternating-direction-implicit finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 5, 966-973, May 2007.
doi:10.1109/TMTT.2007.895645

16. Srivastava, K. V., V. V. Mishra, and A. Biswas, "An accurate analysis of numerical dispersion for 3-D ADI-FDTD with artificial anisotropy," Microwave Optical Technol. Lett., Vol. 49, No. 12, 3109-3112, Dec. 2007.
doi:10.1002/mop.22961

17. Kong, K. B., J. S. Kim, and S. O. Park, "Reduction of numerical dispersion by optimizing second-order cross product derivative term in the ADI-FDTD method," Microwave Optical Technol. Lett., Vol. 50, No. 1, 123-127, Jan. 2008.
doi:10.1002/mop.22991

18. Zhang, Y., S. W. Lv, and J. Zhang, "Reduction of numerical dispersion of 3-D higher order alternating-direction-implicit finite-difference time-domain method with artificial anisotropy," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 10, 2416-2428, Oct. 2009.
doi:10.1109/TMTT.2009.2029638

19. Fu, W. and E. L. Tan, "Development of split-step FDTD method with higher-order spatial accuracy," Electron. Lett., Vol. 40, No. 20, 1252-1253, Sep. 2004.
doi:10.1049/el:20046040

20. Fu, W. and E. L. Tan, "Compact higher-order split-step FDTD method," Electron. Lett., Vol. 41, No. 7, 397-399, Mar. 2005.
doi:10.1049/el:20057927

21. Xiao, F., X. H. Tang, L. Guo, and T. Wu, "High-order accurate split-step FDTD method for solution of Maxwell's equations," Electron. Lett., Vol. 43, No. 2, 72-73, Jan. 2007.
doi:10.1049/el:20073521

22. Chu, Q. X. and Y. D. Kong, "High-order accurate FDTD method based on split-step scheme for solving Maxwell's equations," Microwave Optical Technol. Lett., Vol. 51, No. 2, 562-565, Feb. 2009.
doi:10.1002/mop.24100

23. Kusaf, M. and A. Y. Oztoprak, "An unconditionally stable split step FDTD method for low anisotropy," IEEE Microw. Wireless Comp. Lett., Vol. 18, No. 4, 224-226, Apr. 2008.
doi:10.1109/LMWC.2008.918865

24. Chu, Q. X. and Y. D. Kong, "Three new unconditionally-stable FDTD methods with high-order accuracy," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2675-2682, Sep. 2009.
doi:10.1109/TAP.2009.2027045

25. Kong, Y. D. and Q. X. Chu, "High-order split-step unconditionally-stable FDTD methods and numerical analysis," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3280-3289, Sep. 2011.
doi:10.1109/TAP.2011.2161543

26. Kong, Y.-D., Q.-X. Chu, and R.-L. Li, "Study on the stability and numerical error of the four-stages split-step FDTD method including lumped inductors," Progress In Electromagnetics Research B, Vol. 44, 117-135, 2012.

27. Kong, Y.-D. and Q.-X. Chu, "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012.
doi:10.2528/PIER11082512

28. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "Efficient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, Sep. 2005.
doi:10.1049/el:20052381

29. Gan, T. H. and E. L. Tan, "Stability and dispersion analysis for three-dimensional (3-D) leapfrog ADI-FDTD method," Progress In Electromagnetics Research M, Vol. 23, 1-12, 2012.
doi:10.2528/PIERM11111803

30. Yang, S. C., Z. Chen, Y. Q. Yu, and W. Y. Yin, "An unconditionally stable one-step arbitrary-order leapfrog ADI-FDTD method and its numerical properties," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 1995-2003, Apr. 2012.
doi:10.1109/TAP.2012.2186249

31. Tan, E. L., "Unconditionally stable LOD-FDTD method for 3-D Maxwell's equations," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 85-87, Feb. 2007.
doi:10.1109/LMWC.2006.890166

32. Ahmed, I., E. Chua, E. P. Li, and Z. Z. Chen, "Development of three-dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3596-3600, Nov. 2008.
doi:10.1109/TAP.2008.2005544

33. Liang, F. and G. Wang, "Fourth-order locally one-dimensional FDTD method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14-15, 2035-2043, Jan. 2008.
doi:10.1163/156939308787538017

34. Liu, Q. F., Z. Z. Chen, and W. Y. Yin, "An arbitrary order LOD-FDTD method and its stability and numerical dispersion," IEEE Trans. Antennas Propag., Vol. 57, No. 8, 2409-2417, Aug. 2009.
doi:10.1109/TAP.2009.2024492

35. Li, E. P., I. Ahmed, and R. Vahldieck, "Numerical dispersion analysis with an improved LOD-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 5, 319-321, May 2007.
doi:10.1109/LMWC.2007.895687

36. Jung, K. Y. and F. L. Teixeira, "An iterative unconditionally stable LOD-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 2, 7678, Feb. 2008.

37. Liang, F., G. Wang, and W. Ding, "Low numerical dispersion locally one-dimensional FDTD method based on compact higher-order scheme," Microwave Optical Technol. Lett., Vol. 50, No. 11, 2783-2787, Nov. 2008.
doi:10.1002/mop.23842

38. Liang, F., G. Wang, H. Lin, and B.-Z. Wang, "Numerical dispersion improved three-dimensional locally one-dimensional finite-difference time-domain method," IET Microw. Antennas & Propag., Vol. 5, No. 10, 1256-1263, 2011.
doi:10.1049/iet-map.2010.0595

39. Liu, Q. F., W. Y. Yin, Z. Z. Chen, and P. G. Liu, "An efficient method to reduce the numerical dispersion in the LOD-FDTD method based on the (2, 4) stencil," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2384-2393, Jul. 2010.