Vol. 135
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-12-20
An Unconditional Stable 1D-FDTD Method for Modeling Transmission Lines Based on Precise Split-Step Scheme
By
Progress In Electromagnetics Research, Vol. 135, 245-260, 2013
Abstract
his paper presented a novel unconditional stable FDTD (US-FDTD) algorithm for solving the transient response of uniform or nonuniform multiconductor transmission line with arbitrary coupling status. Analytical proof of unconditional stability and detailed analysis of numerical dispersion are presented. The precise split-time-step scheme has been introduced to eliminate the restriction of the Courant-Friedrich-Levy (CFL) condition. Compared to the conventional USFDTD methods, the proposed approach generally achieves lower phase velocity error for coarse temporal resolution. So larger time scales can be chosen for the transient simulation to achieve accurate results efficiently. Several examples of coupled uniform and nonuniform lines are presented to demonstrate the accuracy, stability, and efficiency of the proposed model.
Citation
Wei Wang, Pei-Guo Liu, and Yu-Jian Qin, "An Unconditional Stable 1D-FDTD Method for Modeling Transmission Lines Based on Precise Split-Step Scheme," Progress In Electromagnetics Research, Vol. 135, 245-260, 2013.
doi:10.2528/PIER12103007
References

1. Eudes, , T., B. Ravelo, and A. Louis, "Transient response characterization of the high-speed interconnection RLCG-model for the signal integrity analysis," Progress In Electromagnetics Research, Vol. 112, 183-197, 2011.

2. Carlsson, , J., , "A FDTD program for computing responses on branched multi-conductor transmission lines," SP Swedish National Testing and Research Insitute, SP Report, 1998.

3. Yilmaz, , A. E., J. M. Jin, and E. Michielssen, "A TDIE-based asynchronous electromagnetic-circuit simulator," IEEE Micro. Wireless Compo. Lett., Vol. 16, No. 3, 122-124, 2006..
doi:10.1109/LMWC.2006.869861

4. Yang, , C. Y. and V. Jandhyala, "A time-domain surface integral technique for mixed electromagnetic and circuit simulation," IEEE Trans. Adv. Packag., Vol. 28, No. 4, 745-753, 2005.
doi:10.1109/TADVP.2005.848389

5. Xu, , K., Z. H. Fan, D. Z. Ding, and R. S. Chen, "GPU accelerated unconditional stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606

6. Wang, R., J. M. Jin, and , "A flexible time-stepping scheme for hybrid ¯eld-circuit simulation based on the extended time-domain FEM ," IEEE Trans. Adv. Packag., Vol. 33, No. 4, 769-776, 2010.
doi:10.1109/TADVP.2010.2044411

7. Djordjeric, , A. R., T. K. Sarkar, and , "Analysis of time response of lossy multiconductor transmission line networks," IEEE Trans. Microw. Theory Tech., Vol. 35, No. 10, 898-908, 1987.
doi:10.1109/TMTT.1987.1133776

8. Griffith, , J. R., M. S. Nakhla, and , "Time-domain analysis of lossy coupled transmission lines," IEEE Trans. Microw. Theory Tech. , Vol. 38, No. 10, 1480-1486, 1990.
doi:10.1109/22.58689

9. Xu, , Q. W., P. Mazumder, and , "Accurate modeling of lossy nonuniform transmission lines by using differential quadrature methods," IEEE Trans. Microw. Theory Tech.,, Vol. 50, 2233-2246, 2002.
doi:10.1109/TMTT.2002.803440

10. Tang, , M., J. F. Mao, and , "Transient analysis of lossy nonuniform transmission lines using a time-step integration method," Progress In Electromagnetics Research, Vol. 69, 257-266, 2007..
doi:10.2528/PIER06123001

11. Jaehoon, , J., H. Ic-Pyo, and N. Robert, "The time domain propagator method for lossless multiconductor quasi-TEM lines," IEEE Trans. Adv. Packag., Vol. 32, No. 3, 619-626, 2009.
doi:10.1109/TADVP.2009.2022016

12. Bagci, , H., A. E. Yilmaz, and E. Michielssen, , "An FFT-accelerated time-domain multiconductor transmission line simulator," IEEE Trans. Electrom. Compat., Vol. 52, No. 1, 199-214, 2010.
doi:10.1109/TEMC.2009.2036602

13. Tang, M., J. F. Mao, and , "Finite-difference analysis of interconnects with frequency-dependent parameters based on equivalent circuit models ," IEEE Trans. Adv. Packag., Vol. 33, No. 2, 457-467, 2010.
doi:10.1109/TADVP.2009.2033200

14. Trakadas, , P. T., C. N. Capsalis, and , "Validation of a modified FDTD method on non-uniform transmission lines," Progress In Electromagnetics Research, Vol. 31, 311-329, 2001.
doi:10.2528/PIER00071705

15. Chiu, C.-N., I.-T. Chiang, and , "A fast approach for simulation long-time response of high-speed dispersive and lossy interconnects terminated with nonlinear loads," Progress In Electromagnetics Research, Vol. 91, 153-171, 2009.
doi:10.2528/PIER09021502

16. Afrooz, , K., A. Abdipour, and , "Effcient method for time-domain analysis of lossy nonuniform multiconductor transmission line driven by a modulated signal using FDTD technique," IEEE Trans. Electrom. Compat., Vol. 54, No. 2, 482-494, 2012.
doi:10.1109/TEMC.2011.2161765

17. Tang, , M., J. F. Mao, and , "A precise time-step integration method for transient analysis of lossy nonuniform transmission lines," IEEE Trans. Electrom. Compat., Vol. 50, No. 1, 166-174, 2008.
doi:10.1109/TEMC.2007.913222

18. Jia, L., W. Shi, and J. Guo, "Arbitrary-difference precise-integration method for the computation of electromagnetic transients in single-phase nonuniform transmission line," IEEE Trans. Power Deliv., Vol. 23, No. 3, 1488-1494, 2008.
doi:10.1109/TPWRD.2008.919187

19. Bai, Z. M., X. K. Ma, and G. Sun, , "A low-dispersion realization of precise integration time-domain method using a fourth-order accurate finite difference scheme," IEEE Trans. Antenn. Propag.,, Vol. 59, No. 4, 1311-1320, 2011.
doi:10.1109/TAP.2011.2109673

20. Higham, , N. J., , "The scaling and squaring method for the matrix exponential revisited," SIAM J. Matrix Anal. Appl., Vol. 26, 1179-1193, 2005.
doi:10.1137/04061101X

21. Kong, , Y. D., Q. X. Chu, and , "High-order split-step unconditionally-stable FDTD methods and numerical analysis," IEEE Trans. Antenn. Propag., Vol. 59, No. 9, 3280-3289, 2011.
doi:10.1109/TAP.2011.2161543

22. Pereda, , J. A., et al., "Analyzing the stability of the FDTD technique by combining the von Neumann method with the Routh-Hurnitz criterion," IEEE Trans. Microw. Theory Tech., Vol. 49, 377-381, 2001.
doi:10.1109/22.903100

23. Wang, J., B. Zhou, L. Shi, C. Gao, and B. Chen, "A novel 3-D weakly conditionally stable FDTD algorithm," Progress In Electromagnetics Research, Vol. 130, 525-540, 2012..

24. Kong, Y. D., Q. X. Chu, and , "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012.
doi:10.2528/PIER11082512

25. Dou, , L., J. Dou, and , "Sensitivity analysis of lossy nonuniform multiconductor transmission lines with nonlinear terminations," IEEE Trans. Adv. Packag., Vol. 33, No. 2, 492-497, 2010..
doi:10.1109/TADVP.2009.2035439

26. Boulejfen, , N., A. B. Kouki, and F. M. Ghannouchi, "Frequency-and time-domain analysis of nonuniform lossy coupled transmission lines with linear and nonlinear terminations," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 3, 367-379, 2000..
doi:10.1109/22.826835

27. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to microwave/mm-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
doi:10.2528/PIER07081401