1. Yee, , K. S., , "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. on Antennas on Propag., Vol. 14, No. 3, 302-307, May 1966.
2. Su, D., D. M. Fu, and Z. H. Chen, "Numerical modeling of active devices characterized by measured S-parameters in FDTD," Progress In Electromagnetics Research, Vol. 80, 381-392, 2008.
doi:10.2528/PIER07120902
3. Li, , J., L. X. Guo, and H. Zeng, , "FDTD method investigation on the polarimetric scattering from 2-D rough surface," Progress In Electromagnetics Research,, Vol. 101, 173-188, 2010.
doi:10.2528/PIER09120104
4. Izadi, , M., M. Z. A. A. Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods," Progress In Electromagnetics Research, Vol. 117, 209-236, , 2011.
5. Koh, I. S., H. Kim, J. M. Lee, J. G. Yook, and C. S. Pil, "Novel explicit 2-D FDTD scheme with isotropic dispersion and enhanced stability," IEEE Trans. on Antennas on Propag., Vol. 54, No. 11, 3505-3510, Nov. 2006.
doi:10.1109/TAP.2006.884288
6. Wang, , C. C., C. W. Kuo, and , "An effcient scheme for processing arbitrary lumped multiport devices in the finite-difference time-domain method," IEEE Trans. on Microw. Theory and Tech, Vol. 55, No. 5, 958-965, May 2007.
doi:10.1109/TMTT.2007.895652
7. Zygiridis, , T. T., T. D. Tsiboukis, and , "Improved finite-difference time-domain algorithm based on error control for lossy materials," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 6, 1440-1445, Jun. 2008.
doi:10.1109/TMTT.2008.923903
8. Tofighi, , M. R., , "FDTD modeling of biological tissues Cole-Cole dispersion for 0.5{30 GHz using relaxation time distribution samples-novel and improved implementations," IEEE Trans. on Microw. Theory and Tech., Vol. 57, No. 10, 2588-2596, Oct. 2009.
doi:10.1109/TMTT.2009.2029767
9. Kim, , H., I. S. Koh, and J. G. Yook, "Enhanced total-field/scattered-field technique for isotropic-dispersion FDTD scheme," IEEE Trans. on Antennas on Propag., Vol. 58, No. 10, 3407-3411, Oct. 2010.
doi:10.1109/TAP.2010.2055791
10. Taflove, , A., S. C. Hagness, and , Computational Electrodynamics: The Finite-di®erence Time-domain Method,, 2nd Ed., Artech House, , 2000.
11. Namiki, , T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. on Microw. Theory and Tech., Vol. 47, No. 10, 2003-2007, Oct. 1999.
doi:10.1109/22.795075
12. Zheng, , F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method," IEEE Trans. on Microw. Theory and Tech.,, Vol. 48, No. 9, 1550-1558, Sep. 2000.
doi:10.1109/22.868993
13. Sun, , G. L., C. W. Trueman, and , "Analysis and numerical experiments on the numerical dispersion of two-dimensional ADI-FDTD," IEEE Antennas Wireless Propag. Lett., Vol. 2, No. 1, 78-81, 2003.
doi:10.1109/LAWP.2003.814771
14. Zheng, , F. and Z. Chen, "Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method," IEEE Trans. on Microw. Theory and Tech., Vol. 49, No. 5, 1006-1009, May 2001.
doi:10.1109/22.920165
15. Wang, M. H., Z. Wang, and J. Chen, "A parameter optimized ADI-FDTD method," IEEE Antennas Wireless Propag. Lett. , Vol. 2, No. 1, 118-121, 2003.
doi:10.1109/LAWP.2003.815283
16. Ahmed, , I., Z. Chen, and , "Error reduced ADI-FDTD methods," IEEE Antennas Wireless Propag. Lett., Vol. 4, 323-325, 2005.
doi:10.1109/LAWP.2005.855630
17. Zheng, , H. X., K. W. Leung, and , "An effcient method to reduce the numerical dispersion in the ADI-FDTD," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 7, 2295-2301, Jul. 2005.
doi:10.1109/TMTT.2005.850441
18. Zhang, , Y., S. W. Lu, and J. Zhang, "Reduction of numerical dispersion of 3-D higher order alternating-direction-implicit finite-di®erence time-domain method with artificial anisotropy," IEEE Trans. on Microw. Theory and Tech., Vol. 57, No. 10, 2416-2428, Oct. 2009.
doi:10.1109/TMTT.2009.2029638
19. Kong, , K. B., S. O. Park, and J. S. Kim, , "Stability and numerical dispersion of 3-D simpli¯ed sampling biorthogonal ADI method," Journal of Electromagnetic Waves and Application,, Vol. 24, No. 1, 1-12, 2010.
doi:10.1163/156939310790322136
20. Sun, , G., C. W. Trueman, and , "Approximate Crank-Nicolson schemes for the 2-D ¯nite-di®erence time-domain method for TEz waves," IEEE Trans. on Antennas on Propag., Vol. 52, No. 11, 2963-2972, Nov. 2004.
doi:10.1109/TAP.2004.835142
21. Xu, , K., Z. H. Fan, D. Z. Ding, and R. S. Chen, "GPU accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010..
doi:10.2528/PIER10020606
22. Fu, , W., E. L. Tan, and , "Development of split-step FDTD method with higher-order spatial accuracy," Electron. Lett., Vol. 40, No. 20, 1252-1253, , Sep. 2004.
doi:10.1049/el:20046040
23. Xiao, , F., X. H. Tang, L. Guo, and T. Wu, "High-order accurate split-step FDTD method for solution of Maxwell's equations," Electron. Lett., Vol. 43, No. 2, 72-73, Jan. 2007.
doi:10.1049/el:20073521
24. Chu, , Q. X., Y. D. Kong, and , "Three new unconditionally-stable FDTD methods with high-order accuracy," IEEE Trans. on Antennas on Propag., Vol. 57, No. 9, 2675-2682, , Sep. 2009.
doi:10.1109/TAP.2009.2027045
25. Kong, , Y. D., Q. X. Chu, and , "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012..
doi:10.2528/PIER11082512
26. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "E±cient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., , Vol. 41, No. 19, 1046-1047, Sep. 2005.
doi:10.1049/el:20052381
27. Ahmed, , I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three-dimensional unconditionally-stable LOD-FDTD method," IEEE Trans. on Antennas on Propag., Vol. 56, No. 11, 3596-3600, Nov. 2008.
doi:10.1109/TAP.2008.2005544
28. Wang, , Z., J. Chen, and Y. Chen, "Development of a higher-order ADI-FDTD method," Microwave Optical Technol. Lett.,, Vol. 37, No. 2, 8-12, Apr. 2003.
doi:10.1002/mop.10808
29. Fu, W., E. L. Tan, and , "Stability and dispersion analysis for higher order 3-D ADI-FDTD method," IEEE Trans. on Antennas on Propag., Vol. 53, No. 11, 3691-3696, Nov. 2005.
doi:10.1109/TAP.2005.858588
30. Liu, , Q. F., Z. Chen, and W. Y. Yin, "An arbitrary order LOD-FDTD method and its stability and numerical dispersion," IEEE Trans. on Antennas on Propag., Vol. 57, No. 8, 24109-2417, Aug. 2009.
31. Kong, , Y. D., Q. X. Chu, and , "High-order split-step unconditionally-stable FDTD methods and numerical analysis," IEEE Trans. on Antennas on Propag., Vol. 59, No. 9, 3280-3289, Sep. 2011.
doi:10.1109/TAP.2011.2161543
32. Yang, S. C., Z. Chen, Y. Q. Yu, and W. Y. Yin, An, "An unconditionally stable one-step arbitrary-order leapfrog ADI-FDTD method and its numerical properties," IEEE Trans. on Antennas on Propag., Vol. 60, No. 4, 1995-2003, Apr. 2012..
doi:10.1109/TAP.2012.2186249
33. Xiao, , F., X. H. Tang, and H. Ma, "High-order US-FDTD based on the weighted ¯nite-di®erence method," Microwave Optical Technol. Lett., Vol. 45, No. 2, 142-144, Apr. 2005.
doi:10.1002/mop.20749
34. Sun, G., C. W. Trueman, and , "Optimized finite-difference time-domain methods on the (2, 4) stencil," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 3, 832-842, Mar. 2005..
doi:10.1109/TMTT.2004.842507
35. Fu, , W., E. L. Tan, and , "A parameter optimized ADI-FDTD method based on the (2, 4) stencil," IEEE Trans. on Antennas on Propag., Vol. 54, No. 6, 1836-1842, Jun. 2006.
doi:10.1109/TAP.2006.875512
36. Liu, , Q. F., W. Y. Yin, Z. Chen, and P. G. Liu, "An e±cient method to reduce the numerical dispersion in the LOD-FDTD method based on the (2, 4) stencil," IEEE Trans. on Antennas on Propag.,, Vol. 58, No. 7, 2384-2393, Jul. 2010.
doi:10.1109/TAP.2010.2048857