Vol. 135
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-10
High-Order Unconditionally-Stable Four-Step Adi-FDTD Methods and Numerical Analysis
By
Progress In Electromagnetics Research, Vol. 135, 713-734, 2013
Abstract
High-order unconditionally-stable three-dimensional (3-D) four-step alternating direction implicit finite-difference time-domain (ADI-FDTD) methods are presented. Based on the exponential evolution operator (EEO), the Maxwell's equations in a matrix form can be split into four sub-procedures. Accordingly, the time step is divided into four sub-steps. In addition, high-order central finite-difference operators based on the Taylor central finite-difference method are used to approximate the spatial differential operators first, and then the uniform formulation of the proposed high-order schemes is generalized. Subsequently, the analysis shows that all the proposed high-order methods are unconditionally stable. The generalized form of the dispersion relations of the proposed high-order methods is carried out. Finally, in order to demonstrate the validity of the proposed methods, numerical experiments are presented. Furthermore, the effects of the order of schemes, the propagation angle, the time step, and the mesh size on the dispersion are illustrated through numerical results. Specifically, the normalized numerical phase velocity error (NNPVE) and the maximum NNPVE of the proposed schemes are lower than that of the traditional ADI-FDTD method.
Citation
Yong-Dan Kong, Qing-Xin Chu, and Rong-Lin Li, "High-Order Unconditionally-Stable Four-Step Adi-FDTD Methods and Numerical Analysis," Progress In Electromagnetics Research, Vol. 135, 713-734, 2013.
doi:10.2528/PIER12102205
References

1. Yee, , K. S., , "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. on Antennas on Propag., Vol. 14, No. 3, 302-307, May 1966.

2. Su, D., D. M. Fu, and Z. H. Chen, "Numerical modeling of active devices characterized by measured S-parameters in FDTD," Progress In Electromagnetics Research, Vol. 80, 381-392, 2008.
doi:10.2528/PIER07120902

3. Li, , J., L. X. Guo, and H. Zeng, , "FDTD method investigation on the polarimetric scattering from 2-D rough surface," Progress In Electromagnetics Research,, Vol. 101, 173-188, 2010.
doi:10.2528/PIER09120104

4. Izadi, , M., M. Z. A. A. Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods," Progress In Electromagnetics Research, Vol. 117, 209-236, , 2011.

5. Koh, I. S., H. Kim, J. M. Lee, J. G. Yook, and C. S. Pil, "Novel explicit 2-D FDTD scheme with isotropic dispersion and enhanced stability," IEEE Trans. on Antennas on Propag., Vol. 54, No. 11, 3505-3510, Nov. 2006.
doi:10.1109/TAP.2006.884288

6. Wang, , C. C., C. W. Kuo, and , "An effcient scheme for processing arbitrary lumped multiport devices in the finite-difference time-domain method," IEEE Trans. on Microw. Theory and Tech, Vol. 55, No. 5, 958-965, May 2007.
doi:10.1109/TMTT.2007.895652

7. Zygiridis, , T. T., T. D. Tsiboukis, and , "Improved finite-difference time-domain algorithm based on error control for lossy materials," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 6, 1440-1445, Jun. 2008.
doi:10.1109/TMTT.2008.923903

8. Tofighi, , M. R., , "FDTD modeling of biological tissues Cole-Cole dispersion for 0.5{30 GHz using relaxation time distribution samples-novel and improved implementations," IEEE Trans. on Microw. Theory and Tech., Vol. 57, No. 10, 2588-2596, Oct. 2009.
doi:10.1109/TMTT.2009.2029767

9. Kim, , H., I. S. Koh, and J. G. Yook, "Enhanced total-field/scattered-field technique for isotropic-dispersion FDTD scheme," IEEE Trans. on Antennas on Propag., Vol. 58, No. 10, 3407-3411, Oct. 2010.
doi:10.1109/TAP.2010.2055791

10. Taflove, , A., S. C. Hagness, and , Computational Electrodynamics: The Finite-di®erence Time-domain Method,, 2nd Ed., Artech House, , 2000.

11. Namiki, , T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Trans. on Microw. Theory and Tech., Vol. 47, No. 10, 2003-2007, Oct. 1999.
doi:10.1109/22.795075

12. Zheng, , F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method," IEEE Trans. on Microw. Theory and Tech.,, Vol. 48, No. 9, 1550-1558, Sep. 2000.
doi:10.1109/22.868993

13. Sun, , G. L., C. W. Trueman, and , "Analysis and numerical experiments on the numerical dispersion of two-dimensional ADI-FDTD," IEEE Antennas Wireless Propag. Lett., Vol. 2, No. 1, 78-81, 2003.
doi:10.1109/LAWP.2003.814771

14. Zheng, , F. and Z. Chen, "Numerical dispersion analysis of the unconditionally stable 3-D ADI-FDTD method," IEEE Trans. on Microw. Theory and Tech., Vol. 49, No. 5, 1006-1009, May 2001.
doi:10.1109/22.920165

15. Wang, M. H., Z. Wang, and J. Chen, "A parameter optimized ADI-FDTD method," IEEE Antennas Wireless Propag. Lett. , Vol. 2, No. 1, 118-121, 2003.
doi:10.1109/LAWP.2003.815283

16. Ahmed, , I., Z. Chen, and , "Error reduced ADI-FDTD methods," IEEE Antennas Wireless Propag. Lett., Vol. 4, 323-325, 2005.
doi:10.1109/LAWP.2005.855630

17. Zheng, , H. X., K. W. Leung, and , "An effcient method to reduce the numerical dispersion in the ADI-FDTD," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 7, 2295-2301, Jul. 2005.
doi:10.1109/TMTT.2005.850441

18. Zhang, , Y., S. W. Lu, and J. Zhang, "Reduction of numerical dispersion of 3-D higher order alternating-direction-implicit finite-di®erence time-domain method with artificial anisotropy," IEEE Trans. on Microw. Theory and Tech., Vol. 57, No. 10, 2416-2428, Oct. 2009.
doi:10.1109/TMTT.2009.2029638

19. Kong, , K. B., S. O. Park, and J. S. Kim, , "Stability and numerical dispersion of 3-D simpli¯ed sampling biorthogonal ADI method," Journal of Electromagnetic Waves and Application,, Vol. 24, No. 1, 1-12, 2010.
doi:10.1163/156939310790322136

20. Sun, , G., C. W. Trueman, and , "Approximate Crank-Nicolson schemes for the 2-D ¯nite-di®erence time-domain method for TEz waves," IEEE Trans. on Antennas on Propag., Vol. 52, No. 11, 2963-2972, Nov. 2004.
doi:10.1109/TAP.2004.835142

21. Xu, , K., Z. H. Fan, D. Z. Ding, and R. S. Chen, "GPU accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010..
doi:10.2528/PIER10020606

22. Fu, , W., E. L. Tan, and , "Development of split-step FDTD method with higher-order spatial accuracy," Electron. Lett., Vol. 40, No. 20, 1252-1253, , Sep. 2004.
doi:10.1049/el:20046040

23. Xiao, , F., X. H. Tang, L. Guo, and T. Wu, "High-order accurate split-step FDTD method for solution of Maxwell's equations," Electron. Lett., Vol. 43, No. 2, 72-73, Jan. 2007.
doi:10.1049/el:20073521

24. Chu, , Q. X., Y. D. Kong, and , "Three new unconditionally-stable FDTD methods with high-order accuracy," IEEE Trans. on Antennas on Propag., Vol. 57, No. 9, 2675-2682, , Sep. 2009.
doi:10.1109/TAP.2009.2027045

25. Kong, , Y. D., Q. X. Chu, and , "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012..
doi:10.2528/PIER11082512

26. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "E±cient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., , Vol. 41, No. 19, 1046-1047, Sep. 2005.
doi:10.1049/el:20052381

27. Ahmed, , I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three-dimensional unconditionally-stable LOD-FDTD method," IEEE Trans. on Antennas on Propag., Vol. 56, No. 11, 3596-3600, Nov. 2008.
doi:10.1109/TAP.2008.2005544

28. Wang, , Z., J. Chen, and Y. Chen, "Development of a higher-order ADI-FDTD method," Microwave Optical Technol. Lett.,, Vol. 37, No. 2, 8-12, Apr. 2003.
doi:10.1002/mop.10808

29. Fu, W., E. L. Tan, and , "Stability and dispersion analysis for higher order 3-D ADI-FDTD method," IEEE Trans. on Antennas on Propag., Vol. 53, No. 11, 3691-3696, Nov. 2005.
doi:10.1109/TAP.2005.858588

30. Liu, , Q. F., Z. Chen, and W. Y. Yin, "An arbitrary order LOD-FDTD method and its stability and numerical dispersion," IEEE Trans. on Antennas on Propag., Vol. 57, No. 8, 24109-2417, Aug. 2009.

31. Kong, , Y. D., Q. X. Chu, and , "High-order split-step unconditionally-stable FDTD methods and numerical analysis," IEEE Trans. on Antennas on Propag., Vol. 59, No. 9, 3280-3289, Sep. 2011.
doi:10.1109/TAP.2011.2161543

32. Yang, S. C., Z. Chen, Y. Q. Yu, and W. Y. Yin, An, "An unconditionally stable one-step arbitrary-order leapfrog ADI-FDTD method and its numerical properties," IEEE Trans. on Antennas on Propag., Vol. 60, No. 4, 1995-2003, Apr. 2012..
doi:10.1109/TAP.2012.2186249

33. Xiao, , F., X. H. Tang, and H. Ma, "High-order US-FDTD based on the weighted ¯nite-di®erence method," Microwave Optical Technol. Lett., Vol. 45, No. 2, 142-144, Apr. 2005.
doi:10.1002/mop.20749

34. Sun, G., C. W. Trueman, and , "Optimized finite-difference time-domain methods on the (2, 4) stencil," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 3, 832-842, Mar. 2005..
doi:10.1109/TMTT.2004.842507

35. Fu, , W., E. L. Tan, and , "A parameter optimized ADI-FDTD method based on the (2, 4) stencil," IEEE Trans. on Antennas on Propag., Vol. 54, No. 6, 1836-1842, Jun. 2006.
doi:10.1109/TAP.2006.875512

36. Liu, , Q. F., W. Y. Yin, Z. Chen, and P. G. Liu, "An e±cient method to reduce the numerical dispersion in the LOD-FDTD method based on the (2, 4) stencil," IEEE Trans. on Antennas on Propag.,, Vol. 58, No. 7, 2384-2393, Jul. 2010.
doi:10.1109/TAP.2010.2048857