1. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402
2. Li, M. H., H. L. Yang, X. W. Hou, Y. Tian, and D. Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409
3. Xu, Y. Q., P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, "A wide-angle planar metamaterial absorber based on split ring resonator coupling," Journal of Applied Physics, Vol. 110, 044102, 2011.
doi:10.1063/1.3622675
4. Li, L., Y. Yang, and C. Liang, "A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes," Journal of Applied Physics, Vol. 110, 063702, 2011.
doi:10.1063/1.3638118
5. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.
6. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express, Vol. 16, 7181-7188, 2008.
doi:10.1364/OE.16.007181
7. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Physical Review B, Vol. 78, 241103(R), 2008.
8. Landy, N. I., C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Physical Review B, Vol. 79, 125104, 2009.
doi:10.1103/PhysRevB.79.125104
9. Grant, J., Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, "Polarization insensitive terahertz metamaterial absorber," Optics Letters, Vol. 36, 1524-1526, 2011.
doi:10.1364/OL.36.001524
10. Huang, L., D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, "Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band," Optics Letters, Vol. 37, 154-156, 2012.
doi:10.1364/OL.37.000154
11. Avitzour, Y., Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Physical Review B, Vol. 79, 045131, 2009.
doi:10.1103/PhysRevB.79.045131
12. Liu, N., M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Letters, Vol. 10, 2342-2348, 2010.
doi:10.1021/nl9041033
13. Liu, X. L., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance," Physical Review Letters, Vol. 104, 207403, 2010.
doi:10.1103/PhysRevLett.104.207403
14. Jiang, Z. H., S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, "Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating," Acs Nano, Vol. 5, 4641-4647, 2011.
doi:10.1021/nn2004603
15. Feng, Q., M. B. Pu, C. G. Hu, and X. G. Luo, "Engineering the dispersion of metamaterial surface for broadband infrared absorption," Optics Letters, Vol. 37, 2133-2135, 2012.
doi:10.1364/OL.37.002133
16. Dayal, G. and S. A. Ramakrishna, "Design of highly absorbing metamaterials for infrared frequencies," Optics Express, Vol. 20, 17503-17508, 2012.
doi:10.1364/OE.20.017503
17. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broad-band polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature Communications, Vol. 2, 517, 2011.
doi:10.1038/ncomms1528
18. Wang, Y., T. Y. Sun, T. Paudel, Y. Zhang, Z. F. Ren, and K. Kempa, "Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells," Nano Letters,, Vol. 12, 440-445, 2012.
doi:10.1021/nl203763k
19. Wang, J. Q., C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, "Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency," Optics Express, Vol. 20, 14871-14878, 2012.
doi:10.1364/OE.20.014871
20. Gu, S., J. P. Barrett, T. H. Hand, B. I. Popa, and S. A. Cummer, "A broadband low-reflection metamaterial absorber," Journal of Applied Physics, Vol. 108, 064913, 2010.
doi:10.1063/1.3485808
21. Hu, C., X. Li, Q. Feng, X. N. Chen, and X. Luo, "Introducing dipole-like resonance into magnetic resonance to realize simultaneous drop in transmission and reflection at terahertz frequency," Journal of Applied Physics, Vol. 108, 053103, 2010.
doi:10.1063/1.3467528
22. Holloway, C. L., A. Dienstfrey, E. F. Kuester, J. F. O'Hara, A. K. Azad, and A. J. Taylor, "A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials," Metamaterials, Vol. 3, 100-112, 2009.
doi:10.1016/j.metmat.2009.08.001
23. Holloway, C. L., E. F. Kuester, and A. Dienstfrey, "Characterizing metasurfaces/metafilms: The connection between surface susceptibilities and effective material properties," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1507-1511, 2011.
doi:10.1109/LAWP.2011.2182591
24. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, 10-35, 2012.
doi:10.1109/MAP.2012.6230714
25. Morits, D. and C. Simovski, "Electromagnetic characterization of planar and bulk metamaterials: A theoretical study," Physical Review B, Vol. 82, 165114, 2010.
doi:10.1103/PhysRevB.82.165114