1. Lofgen, M., D. Anderson, M. Lisak, and L. Lundgren, "Breakdown-induced distortion of high power microwave pulses in air," Phys. Fluids B, Vol. 3, No. 12, 3528-3531, 1991.
doi:10.1063/1.859731
2. Nielsen, P. E., Effect of Directed Energy Weapons, Directed Energy Profession Society, New Mexico, 2009.
3. Wang, H., J. Li, H. Li, K. Xiao, and H. Chen, "Experimental study and spice simulation of cmos inverters latch-up effects due to high power microwave interference," Progress In Electromagnetics Research, Vol. 87, 313-330, 2008.
doi:10.2528/PIER08100408
4. Kancleris, Z., G. Slekas, V. Tamosiunas, and M. Tamosiuniene, "Resistive sensor for high power microwave pulse measurement of Te01 mode in circular waveguide," Progress In Electromagnetics Research, Vol. 92, 267-280, 2009.
doi:10.2528/PIER09041409
5. Chang, C., X. Zhu, G. Liu, J. Fang, R. Xiao, C. Chen, H. Shao, J. Li, H. Huang, Q. Zhang, and Z.-Q. Zhang, "Design and experiments of the GW high-power microwave feed horn," Progress In Electromagnetics Research, Vol. 101, 157-171, 2010.
doi:10.2528/PIER10010202
6. Kim, J., S. P. Kuo, and P. Kossey, "Modelling and numerical simulation of microwave pulse propagation in an air-breakdown environment," J. Plasma Phys., Vol. 53, No. 3, 253-266, 1995.
doi:10.1017/S0022377800018183
7. Nam, S. K. and J. P. Verboncoeur, "Global model for high power microwave breakdown at high pressure in air," Computer Phys. Communications, Vol. 180, 628-635, 2009.
doi:10.1016/j.cpc.2008.12.013
8. Tang, T., C. Liao, and W. B. Lin, "Characteristics of analysis of repetition frequency high-power microwave pulses in atmosphere," Progress In Electromagnetics Research M, Vol. 14, 207-220, 2010.
doi:10.2528/PIERM10092010
9. Zhao, P., C. Liao, and W. Lin, "Numerical studies of the propagation of high-power damped sine microwave pulse in the atmosphere," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17-18, 2365-2378, 2011.
doi:10.1163/156939311798806130
10. Yee, J. H., R. A. Alvarez, D. J. Mayhall, D. P. Byrne, and J. Degroot, "Theory of intense electromagnetic pulse propagation through the atmosphere," Phys. Fluids, Vol. 29, No. 4, 1238-1244, 1986.
doi:10.1063/1.865872
11. Chaudhury, B. and J. Boeuf, "Computational studies of filamentary pattern formation in a high power microwave breakdown generated air plasma," IEEE Trans. Plasma Sci., Vol. 38, No. 9, 2281-2288, 2010.
doi:10.1109/TPS.2010.2055893
12. Zhao, P., C. Liao, W. Lin, C. Chang, and H. Fu, "Numerical studies of the high power microwave breakdown in gas using the fluid model with a modified electron energy distribution function," Phys. Plasmas, Vol. 18, 102111, 2011.
doi:10.1063/1.3652845
13. Hagelaar , G. J. M. and L. C. Pitchford, "Solving the Boltzmann equation to obtain electron transport coefficients and rate coe±cients for fluid models," Plasma Sources Sci. Technol., Vol. 14, 722-733, 2005.
doi:10.1088/0963-0252/14/4/011
14. Vahedi, V. and M. Surendra, "A monte carlo collision model for the particle-in-cell method: Applications to argon and oxygen discharges," Comput. Phys. Comm., Vol. 87, No. 1-2, 179-198, 1995.
doi:10.1016/0010-4655(94)00171-W
15. Itikawa, Y., "Cross sections for electron collisions with nitrogen molecules," J. Phys. Chem. Ref. Data, Vol. 35, No. 1, 31-53, 2006.
doi:10.1063/1.1937426
16. Peterson, L. R. and J. E. Allen, "Electron impact cross sections for argon," J. Chemical Phys., Vol. 56, No. 12, 6068-6076, 1972.
doi:10.1063/1.1677156
17. Tetenbaum microwave breakdown of air from 1 to 1000Torr, S. J., A. D. Macdonald, and H. W. Bandel, "Pulsed," J. Appl. Phys., Vol. 42, 5871-5872, 1971.
18. Cook, A., M. Shapiro, and R. Temkin, "Pressure dependence of plasma structure in microwave gas breakdown at 110 GHz," Appl. Phys. Lett., Vol. 97, 011504, 2010.
doi:10.1063/1.3462320
19. Robert, R., "Optimization of HPM device parameters for maximum air transmission," Intense Microwave Pulses, Vol. 1872, 212-233, 1993.