Vol. 26
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-11-05
Effects of Microwave Frequency on Electron Energy Distribution Function and Air Breakdown Using the Fluid Model
By
Progress In Electromagnetics Research M, Vol. 26, 279-287, 2012
Abstract
The non-equilibrium electron energy distribution function (EEDF) obtained via solving the Boltzmann equation is introduced into the fluid model, and the effects of the microwave frequency on the EEDF and air breakdown are investigated. Numerical simulations show that the breakdown threshold of the fluid model with the non-equilibrium EEDF agrees well with that of the reported experiments. The microwave frequency plays an important role on the shape of the non-equilibrium EEDF at low pressures. The breakdown time at the low pressures predicted by the Maxwellian EEDF is shorter than that from the non-equilibrium EEDF in low-frequency oscillating fields, while matches the latter in high-frequency oscillating fields.
Citation
Pengcheng Zhao, Cheng Liao, Wenbin Lin, and Ju Feng, "Effects of Microwave Frequency on Electron Energy Distribution Function and Air Breakdown Using the Fluid Model," Progress In Electromagnetics Research M, Vol. 26, 279-287, 2012.
doi:10.2528/PIERM12101201
References

1. Lofgen, M., D. Anderson, M. Lisak, and L. Lundgren, "Breakdown-induced distortion of high power microwave pulses in air," Phys. Fluids B, Vol. 3, No. 12, 3528-3531, 1991.
doi:10.1063/1.859731

2. Nielsen, P. E., Effect of Directed Energy Weapons, Directed Energy Profession Society, New Mexico, 2009.

3. Wang, H., J. Li, H. Li, K. Xiao, and H. Chen, "Experimental study and spice simulation of cmos inverters latch-up effects due to high power microwave interference," Progress In Electromagnetics Research, Vol. 87, 313-330, 2008.
doi:10.2528/PIER08100408

4. Kancleris, Z., G. Slekas, V. Tamosiunas, and M. Tamosiuniene, "Resistive sensor for high power microwave pulse measurement of Te01 mode in circular waveguide," Progress In Electromagnetics Research, Vol. 92, 267-280, 2009.
doi:10.2528/PIER09041409

5. Chang, C., X. Zhu, G. Liu, J. Fang, R. Xiao, C. Chen, H. Shao, J. Li, H. Huang, Q. Zhang, and Z.-Q. Zhang, "Design and experiments of the GW high-power microwave feed horn," Progress In Electromagnetics Research, Vol. 101, 157-171, 2010.
doi:10.2528/PIER10010202

6. Kim, J., S. P. Kuo, and P. Kossey, "Modelling and numerical simulation of microwave pulse propagation in an air-breakdown environment," J. Plasma Phys., Vol. 53, No. 3, 253-266, 1995.
doi:10.1017/S0022377800018183

7. Nam, S. K. and J. P. Verboncoeur, "Global model for high power microwave breakdown at high pressure in air," Computer Phys. Communications, Vol. 180, 628-635, 2009.
doi:10.1016/j.cpc.2008.12.013

8. Tang, T., C. Liao, and W. B. Lin, "Characteristics of analysis of repetition frequency high-power microwave pulses in atmosphere," Progress In Electromagnetics Research M, Vol. 14, 207-220, 2010.
doi:10.2528/PIERM10092010

9. Zhao, P., C. Liao, and W. Lin, "Numerical studies of the propagation of high-power damped sine microwave pulse in the atmosphere," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17-18, 2365-2378, 2011.
doi:10.1163/156939311798806130

10. Yee, J. H., R. A. Alvarez, D. J. Mayhall, D. P. Byrne, and J. Degroot, "Theory of intense electromagnetic pulse propagation through the atmosphere," Phys. Fluids, Vol. 29, No. 4, 1238-1244, 1986.
doi:10.1063/1.865872

11. Chaudhury, B. and J. Boeuf, "Computational studies of filamentary pattern formation in a high power microwave breakdown generated air plasma," IEEE Trans. Plasma Sci., Vol. 38, No. 9, 2281-2288, 2010.
doi:10.1109/TPS.2010.2055893

12. Zhao, P., C. Liao, W. Lin, C. Chang, and H. Fu, "Numerical studies of the high power microwave breakdown in gas using the fluid model with a modified electron energy distribution function," Phys. Plasmas, Vol. 18, 102111, 2011.
doi:10.1063/1.3652845

13. Hagelaar , G. J. M. and L. C. Pitchford, "Solving the Boltzmann equation to obtain electron transport coefficients and rate coe±cients for fluid models," Plasma Sources Sci. Technol., Vol. 14, 722-733, 2005.
doi:10.1088/0963-0252/14/4/011

14. Vahedi, V. and M. Surendra, "A monte carlo collision model for the particle-in-cell method: Applications to argon and oxygen discharges," Comput. Phys. Comm., Vol. 87, No. 1-2, 179-198, 1995.
doi:10.1016/0010-4655(94)00171-W

15. Itikawa, Y., "Cross sections for electron collisions with nitrogen molecules," J. Phys. Chem. Ref. Data, Vol. 35, No. 1, 31-53, 2006.
doi:10.1063/1.1937426

16. Peterson, L. R. and J. E. Allen, "Electron impact cross sections for argon," J. Chemical Phys., Vol. 56, No. 12, 6068-6076, 1972.
doi:10.1063/1.1677156

17. Tetenbaum microwave breakdown of air from 1 to 1000Torr, S. J., A. D. Macdonald, and H. W. Bandel, "Pulsed," J. Appl. Phys., Vol. 42, 5871-5872, 1971.

18. Cook, A., M. Shapiro, and R. Temkin, "Pressure dependence of plasma structure in microwave gas breakdown at 110 GHz," Appl. Phys. Lett., Vol. 97, 011504, 2010.
doi:10.1063/1.3462320

19. Robert, R., "Optimization of HPM device parameters for maximum air transmission," Intense Microwave Pulses, Vol. 1872, 212-233, 1993.