Vol. 36
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-11-27
Compact Lowpass Filter with Wide Stopband Using Novel Double-Folded Scmrc Structure with Parallel Open-Ended Stub
By
Progress In Electromagnetics Research Letters, Vol. 36, 77-86, 2013
Abstract
Nowadays, there is expanding interest in planar compact microstrip filters applied in microwave wireless system nowadays. The compact microstrip resonant cell (CMRC) and spiral compact microstrip resonant cell (SCMRC) are more and more popular in filter design due to their slow-wave and band-stop effects. In this paper, a novel double-folded SCMRC (DSCMRC) is proposed, analyzed and measured, which turns out to have more compact dimensions and distinctly broader stopband than CMRC and SCMRC. Furthermore, an improved DSCMRC circuit with two parallel open-ended stubs that are added into the DSCMRC structure is presented, which could introduce more transmission zeros in the stopband for better out-of-band rejection than the original DSCMRC. The measured results show the excellent performance of the improved DSCMRC circuit structure. Finally, a novel low-pass filter incorporating two improved DSCMRC in series is simulated and measured, which proves to have an excellent performance of out-of-band rejection up to 25 GHz with a really compact circuit size.
Citation
Ke Li, Minghua Zhao, Yong Fan, Zhong Bo Zhu, and Wan-Zhao Cui, "Compact Lowpass Filter with Wide Stopband Using Novel Double-Folded Scmrc Structure with Parallel Open-Ended Stub," Progress In Electromagnetics Research Letters, Vol. 36, 77-86, 2013.
doi:10.2528/PIERL12100910
References

1. Pozar, D. M., Microwave Engineering, 2nd Ed., Wiley, New York, 1998.

2. Hong, , J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
doi:10.1002/0471221619

3. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101

4. Chang, C. C., Y. Qian, and T. Itoh, "Analysis and applications of uniplanar compact photonic bandgap structures," Progress In Electromagnetic Research, Vol. 41, 211-235, 2003.

5. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions Antennas and Propagation, Vol. 51, 2939-2949, 2003.

6. Sharma, R., T. Chakravarty, and S. Bhooshan, "Design of a novel 3 dB microstrip backward wave coupler using defected ground structure," Progress In Electromagnetic Research, Vol. 65, 261-273, 2006.
doi:10.2528/PIER06100502

7. Xu, H.-J., Y.-H. Zhang, and Y. Fan, "Analysis of the connection between K connector and microstrip with electromagnetic bandgap (EBG) structures," Progress In Electromagnetics Research, Vol. 73, 239-247, 2007.
doi:10.2528/PIER07040801

8. Gujral, M., J. L.-W. Li, T. Yuan, and C.-W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807

9. Xue, Q., K. M. Shum, and C. H. Chan, "Novel 1-D microstrip PBG cells," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 10, 403-405, Oct. 2000.

10. Xue, Q., K. M. Shum, and C. H. Chan, "Low conversion-loss fourth subharmonic mixers incorporating CMRC for millimeter-wave applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 5, 1449-1454, May 2003.
doi:10.1109/TMTT.2003.810153

11. Deng, K., Q. Xue, and W. Che, "Improved CMRC lowpass filter with wide stopband characteristics," Electronics Letters, Vol. 43, No. 8, Apr. 12, 2007.

12. Zhang, F., J. Z. Gu, C. Y. Gu, L. N. Shi, C. F. Li, X. W. Sun, "Lowpass filter with in-line beeline CMRC," Electronics Letters, Vol. 42, No. 8, Apr. 13, 2006.

13. Xue, Q., K. M. Shum, and C. H. Chan, "Novel oscillator incorporating a compact microstrip resonant cell," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 5, May 2001.

14. Yang, X., B. Zhang, Y. Fan, F. Q. Zhong, and Z. Chen, "Design of improved CMRC structure used in terahertz subharmonic pumped mixer," 2010 12th IEEE International Conference on Communication Technology (ICCT), 559-562, 2010.
doi:10.1109/ICCT.2010.5688912

15. Yum, T. Y., Q. Xue, and C. H. Chan, "Novel subharmonically pumped mixer incorporating dual-band stub and in-line SCMRC," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 12, Dec. 2003.

16. Gu, J. and X. Sun, "Compact lowpass filter using spiral compact microstrip resonant cells," Electronics Letters, Vol. 41, No. 19, 1065-1066, Sep. 15, 2005.
doi:10.1049/el:20052569

17. Quendo, C., E. Rius, and C. Person, "An original topology of dual-band filter with transmission zeros," 2003 IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 1093-1096, 2003.
doi:10.1109/MWSYM.2003.1212559

18. Quendo, C., E. Rius, and C. Person, "Narrow bandpass filters using dual-behavior resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 734-743, Mar. 2003.
doi:10.1109/TMTT.2003.808729

19. Chen, J., Z.-B.Weng, Y.-C. Jiao, and F.-S. Zhang, "Lowpass filter design of hilbert curve ring defected ground structure," Progress In Electromagnetics Research, Vol. 70, 269-280, 2007.
doi:10.2528/PIER07012603

20. Yang, M. H., J. Xu, Q. Zhao, and X. Sun, "Wide-stopband and miniarurized lowpass filters using sirs-loaded hairpin resonators," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2385-2396, 2009.
doi:10.1163/156939309790416152

21. Yang, M., J. Xu, Q. Zhao, L. Peng, and G. Li, "Compact, broad-stopband lowpass filters using sirs-loaded circular hairpin resonators ," Progress In Electromagnetics Research, Vol. 102, 95-106, 2010.
doi:10.2528/PIER09120901

22. Cao, H., W. Guan, S. He, and L. Yang, "Compact lowpass filter with high selectivity using G-shaped defected microstrip structure," Progress In Electromagnetics Research Letters, Vol. 33, 55-62, 2012.

23. Lu, K., G.-M. Wang, Y.-W. Wang, and X. Yin, "An improved design of Hi-Lo microstrip lowpass filter using uniplanar double spiral resonant cells," Progress In Electromagnetics Research Letters, Vol. 23, 89-98, 2011.

24. Zhu, H.-R., W. Shen, and J.-F. Mao, "A miniaturized semi-lumped lowpass filter with multiple transmission zeros and wide stopband," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 89, 1148-1157, 2012.
doi:10.1080/09205071.2012.710559

25. Xie, H.-H., Y.-C. Jiao, L.-N. Chen, and F.-S. Zhang, "An effective analysis method for ebg reducing patch antenna coupling," Progress In Electromagnetics Research Letters, Vol. 21, 187-193, 2011.

26. Khromova , I., I. Ederra, R. Gonzalo, and B. P. de Hon, "Symmetrical pyramidal horn antennas based on EBG structures," Progress In Electromagnetics Research B, Vol. 29, 1-22, 2011.
doi:10.2528/PIERB11020403