Vol. 36
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-12-04
Improved Bandwidth Waveguide Bandpass Filter Using Sierpinski Fractal Shaped Irises
By
Progress In Electromagnetics Research Letters, Vol. 36, 113-120, 2013
Abstract
This paper presents a novel waveguide band pass filter using Sierpinski fractal-shaped irises. The bandwidth of the proposed filter is more than 5.5 times in comparison to similar waveguide filter with rectangular shape iris. The offered filter is designed and simulated using Ansoft HFSS and then fabricated. The results show less than 0.5 dB insertion loss and return loss better than 13 dB in operation frequency band for the proposed filter.
Citation
Abbas Ali Lotfi-Neyestanak, Seyed Majid Seyed-Momeni, and Mohammad Reza Haraty, "Improved Bandwidth Waveguide Bandpass Filter Using Sierpinski Fractal Shaped Irises," Progress In Electromagnetics Research Letters, Vol. 36, 113-120, 2013.
doi:10.2528/PIERL12100811
References

1. Matthai, G. L., L. Young, and E. T. Jones, Microwave Filters, Impedance Matching Networks and Coupling Structures, Artech House, Norwood, MA, Feb. 1980.

2. Pozar, D. M., Microwave Engineering, Addison-Wesley, 1990.

3. Levy, R., R. V. Snyder, and G. Matthaei, "Design of microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 50, 783-793, 2002.
doi:10.1109/22.989962

4. Khalaj-Amirhosseini, M., "Microwave filters using waveguides filled by multi-layer dielectric," Progress In Electromagnetics Research, Vol. 66, 105-110, 2006.
doi:10.2528/PIER06102502

5. Bahrami, H., M. Hakkak, and A. Pirhadi, "Analysis and design of highly compact bandpass waveguide filter utilizing complementary split ring resonators (CSRR)," Progress In Electromagnetics Research, Vol. 80, 107-122, 2008.
doi:10.2528/PIER07111203

6. Lotfi Neyestanak, A. A. and D. Oloumi, "Waveguide band-pass filter with identical tapered posts," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2475-2484, 2008.
doi:10.1163/156939308787543804

7. Cameron, R. J., R. Mansour, and C. M. Kudsia, Microwave Filters for Communication Systems: Fundamentals, Design and Applications, Wiley-Interscience, Hoboken, NJ, 2007.

8. Ghorbaninejad, H. and M. Khalaj-Amirhosseini, "Compact band-pass filters utilizing dielectric filled waveguides," Progress In Electromagnetics Research B, Vol. 7, 105-115, 2008.
doi:10.2528/PIERB08031101

9. Puente, C., J. Romeu, R. Pous, and A. Cardama, "On the behavior of Sierpinski multiband fractal antenna," IEEE Trans. Antennas Propag., Vol. 46, No. 4, 517-524, 1998.
doi:10.1109/8.664115

10. Kordzadeh, A. and F. H. Kashani, "A new reduced size microstrip patch antenna with fractal shaped defects," Progress In Electromagnetics Research B, Vol. 11, 29-37, 2009.
doi:10.2528/PIERB08100501

11. Anguera, J., J. P. Daniel, C. Borja, J. Mumbru, C. Puente, T. Leduc, N. Laeveren, and P. Van Roy, "Metallized foams for fractal-shaped microstrip antennas," IEEE Antennas Propag. Mag., Vol. 50, No. 6, 20-38, Dec. 2008.
doi:10.1109/MAP.2008.4772718

12. Oloumi, D., A. Kordzadeh, and A. A. Lotfi Neyestanak, "Size reduction and bandwidth enhancement of a waveguide bandpass filter using fractal-shaped irises," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009.

13. Khalaj-Amirhosseini, M., "Microwave filters using waveguides filed by multi-layer dielectric," Progress In Electromagnetics Research, Vol. 66, 105-110, 2006.
doi:10.2528/PIER06102502

14. Wang , Z., X. Li, S. Zhou, B. Yan, R.-M. Xu, and W. Lin, "Half mode substrate integrated folded waveguide (HMSIFW) and partial H-plane bandpass filter," Progress In Electromagnetics Research, Vol. 101, 203-216, 2010.
doi:10.2528/PIER10011201