Vol. 136
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-17
Design of a Compact Ultrawideband Metamaterial Antenna Based on the Modified Split-Ring Resonator and Capacitively Loaded Strips Unit Cell
By
Progress In Electromagnetics Research, Vol. 136, 157-173, 2013
Abstract
A a new compact ultrawideband (UWB) patch antenna based on the resonance mechanism of a composite right/left-handed (CRLH) transmission line (TL) is proposed. The radiating element of the antenna is made from three left-handed (LH) metamaterial (MTM) unit cells placed along one axis, where each unit cell combines a modified split-ring resonator (SRR) structure with capacitively loaded strips (CLS). An analysis of the eigenfrequencies of these unit cells yields one- and two-dimensional dispersion diagrams, which correspond to one-unit cell antenna and the three unit-cell antenna, respectively. A trident feed and a slotted-partial ground plane are used to match the right-and left-handed (RH and LH) modes of the antenna, respectively. In addition, an analysis of the surface current distribution of the antenna shows that, slots on the metallic area reduce the Q-factor. This recdution in the Q-factor results in a wide bandwidth of 189% at 3.7 GHz, which spans the UWB frequency range between 2.9-9.9 GHz. The total footprint of the antenna at the lowest frequency is 0.2λ0 x 0.2λ0 x 0.015λ0, where λ0 is the free space wavelength. The gain of the antenna ranges between -1 to 5 dB throughout the frequency band.
Citation
Mimi Aminah Wan Nordin, Mohammad Tariqul Islam, and Norbahiah Misran, "Design of a Compact Ultrawideband Metamaterial Antenna Based on the Modified Split-Ring Resonator and Capacitively Loaded Strips Unit Cell," Progress In Electromagnetics Research, Vol. 136, 157-173, 2013.
doi:10.2528/PIER12100708
References

1. Xu, F., Z.-X. Wang, X. Chen, and X.-A. Wang, "Dual band-notched UWB antenna based on spiral electromagnetic-bandgap structure," Progress In Electromagnetics Research B, Vol. 39, 393-409, 2012.
doi:10.2528/PIERB12021607

2. Tilanthe, P., P. C. Sharma, and T. K. Bandopadhyay, "A compact UWB antenna with dual band rejection," Progress In Electromagnetics Research B, Vol. 35, 389-405, 2011.
doi:10.2528/PIERB11092204

3. Khaled, E. E. M., A. A. R. Saad, and D. A. Salem, "A proximity-FED annular slot antenna with di®erent a band-notch manipulations for ultra-wide band applications," Progress In Electromagnetics Research B, Vol. 37, 289-306, 2012.
doi:10.2528/PIERB11103102

4. Chen, H., Y. Ding, and D. S. Cai, "A CPW-fed UWB antenna with WiMAX/WLAN band-notched characteristics," Progress In Electromagnetics Research, Vol. 25, 163-173, 2011.

5. Lin, S., R.-N. Cai, G.-L. Huang, and J.-X. Wang, "A miniature UWB semi-circle monopole printed antenna," Progress In Electromagnetics Research Letters, Vol. 23, 157-163, 2011.

6. Islam, M. T., R. Azim, and A. T. Mobashsher, "Triple band-notched planar UWB antenna using parasitic strips," Progress In Electromagnetics Research, Vol. 129, 161-179, 2012.

7. Yazdi, M. and N. Komjani, "A compact band-notched UWB planar monopole antenna with parasitic elements," Progress In Electromagnetics Research, Vol. 24, 129-138, 2011.

8. Osman, M. A. R., M. K. A. Rahim, M. Azfar, N. A. Samsuri, F. Zubir, and K. Kamardin, "Design, implementation and performance of ultra-wideband textile antenna," Progress In Electromagnetics Research B, Vol. 27, 307-325, 2011.

9. Zhou, D., S.-C. S. Gao, F. Zhu, R. A. Abd-Alhameed, and J.-D. Xu, "A simple and compact planar ultra wideband antenna with single or dual band-notched characteristics," Progress In Electromagnetics Research, Vol. 123, 47-65, 2012.
doi:10.2528/PIER11101104

10. Malik, J. and M. V. Kartikeyan, "Metamaterial inspired patch antenna with L-shape slot loaded ground plane for dual band (WiMAX/WLAN) applications," Progress In Electromagnetics Research Letters, Vol. 31, 35-43, 2012.
doi:10.2528/PIERL12021908

11. Mahdy, M. R. C., M. R. A. Zuboraj, A. A. N. Ovi, and M. A. Matin, "Novel design of triple band rectangular patch antenna loaded with metamaterial," Progress In Electromagnetics Research Letters, Vol. 21, 99-107, 2011.

12. Jing, N., H. Zhao, and L. Huang, "A novel design of planar spiral antenna with metamaterial," PIERS Proceedings, 725-728, Xi'an, China, Mar. 22-26, 2010.

13. Mahdy, M. R. C., M. R. A. Zuboraj, A. A. N. Ovi, and M. A. Matin, "Novel concept of ENG metamaterial in rectangular microstrip patch antenna (partially loaded case) for dual band application," PIERS Proceedings, 920-923, Marrakesh, Morocco, Mar. 20-23, 2011.

14. Du, G.-H., X. Tang, and F. Xiao, "Tri-band metamaterial-inspired monopole antenna with modified S-shaped resonator," Progress In Electromagnetics Research Letters, Vol. 23, 39-48, 2011.

15. Lee, H.-M. and H. Lee, "A dual-band metamaterial absorber based with resonant-magnetic structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012.

16. Danaeifar, M., M. Kamyab, A. Jafargholi, and M. Veysi, "Bandwidth enhancement of a class of cloaks incorporating metamaterials ," Progress In Electromagnetics Research Letters, Vol. 28, 37-44, 2012.
doi:10.2528/PIERL11093005

17. Lee, C. J., K. M. K. H. Leong, and T. Itoh, "Composite right/left-handed transmission line based compact resonant antennas for RF module integration ," IEEE Trans. Antennas and Propag., Vol. 54, No. 8, 2283-2291, Aug. 2006.
doi:10.1109/TAP.2006.879199

18. Lee, C. J., K. M. K. H. Leong, and T. Itoh, "Design of resonant small antenna using composite right/left-handed transmission line," Antennas Propagat. Soc. Int. Symp., Vol. 2B, 2005.

19. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications --- The Engineering Approach, Wiley Interscience, 2006.
doi:10.1002/0471754323

20. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847

21. Lai, A., C. Caloz, and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, No. 3, 34-50, Sep. 2004.
doi:10.1109/MMW.2004.1337766

22. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced non-linear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, Feb. 1999.
doi:10.1109/22.798002

23. Eleftheriades, G. V., "EM transmission-line metamaterials," Materials Today, Vol. 12, No. 3, 30-41, Mar. 2009.
doi:10.1016/S1369-7021(09)70073-2

24. Majid, H. A., M. K. A Rahim, and T. Masri, "Microstrip antenna's gain enhancement using left-handed metamaterial structure," Progress In Electromagnetic Research M, Vol. 8, 235-247, 2009.
doi:10.2528/PIERM09071301

25. Tang, W. X., Q. Cheng, and T. J. Cui, "Electric and magnetic responses from metamaterial unit cells at Terahertz," Terahertz Science and Technology, Vol. 2, No. 1, Mar. 2009.

26. Li, L., H. Yao, Q. Wu, and Z. Chen, "Broad-bandwidth and low-loss metamaterials: Theory, design and realization," J. Zhejiang Univ. Science A, Vol. 7, No. 1, 5-23, Jan. 2006.
doi:10.1631/jzus.2006.A0005

27. Palandoken, M., A. Grede, and H. Henke, "Broadband microstrip antenna with left-handed metamaterials," IEEE Trans. Antennas Propagat., Vol. 57, No. 2, 331-338, Feb. 2009.
doi:10.1109/TAP.2008.2011230

28. Liu, J., K. P. Esselle, and S. Zhong, "An extremely wideband rectangular monopole antenna with a modified microstrip feed," Proc. Antennas and Propagation, (EuCAP), 1-5, Apr. 2010.

29. Yaghjian, A. D. and S. R. Best, "Impedance, bandwidth, and Q of antennas," IEEE Trans. Antennas Propagat., Vol. 53, No. 4, 1298-1324, 2005.
doi:10.1109/TAP.2005.844443

30. Gustafsson, M. and S. Nordebo, "Bandwidth, Q factor, and resonance models of antennas," Progress In Electromagnetic Research, Vol. 62, 1-20, 2006.
doi:10.2528/PIER06033003

31. Yang, H. Y. D. and Y. Y. Zhang, "A wideband miniaturized dipole antenna on a printed circuit board," Progress In Electromagnetic Research C, Vol. 10, 175-185, 2009.

32. Chen, Z. N., T. S. P. See, and X. Qing, "Small printed ultrawideband antennas with reduced ground plane effect," IEEE Trans. Antennas Propagat., Vol. 55, No. 2, 383-388, 2007.
doi:10.1109/TAP.2006.889823

33. Sadat, S., M. Fardis, F. G. Kharakhili, and G. Dadashzadeh, "A compact microstrip square-ring slot antenna for UWB applications," Progress In Electromagnetic Research, Vol. 67, 173-179, 2007.
doi:10.2528/PIER06082901

34. Hayt, Jr., W. H. and J. A. Buck, Engineering Electromagnetics, 6th Ed., McGraw Hill, 2001.

35. Kraus, J. D. and R. J. Marhefka, Antennas for All Applications, 3rd Ed., McGraw-Hill, 2003.