Vol. 28
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-01-07
Design and Modelling of a 1×n All-Optical Nonlinear Mach-Zehnder Switch Controlled by Wavelength and Input Power
By
Progress In Electromagnetics Research M, Vol. 28, 101-113, 2013
Abstract
The authors propose two 1×N all optical switches by taking the advantage of the accelerating behaviour of a spatial soliton in a Mach-Zehnder waveguide and the soliton's oscillating behaviour while propagating inside the nonlinear waveguide. The proposed switches consist of asymmetric and symmetric Mach-Zehnder waveguides followed by a homogenous Kerr medium, which is terminated by N parallel trapezoidal waveguides. In these switches, the signal is dropped from one of the desired output channels by changing the input pulse of wavelength or power. The numerical results confirm the switching application and show that the proposed 1×N switches can be used for wide ranges of wavelength and power, which are suitable for optical communication networks and optical data processing systems.
Citation
Saeed Karimi, Majid Ebnali-Heidari, and Farnaz Forootan, "Design and Modelling of a 1×n All-Optical Nonlinear Mach-Zehnder Switch Controlled by Wavelength and Input Power," Progress In Electromagnetics Research M, Vol. 28, 101-113, 2013.
doi:10.2528/PIERM12100504
References

1. Nakamura, H., Y. Sugimoto, and K. Asakawa, "Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks," Optics Express, Vol. 12, No. 26, 6606-6614, 2004.
doi:10.1364/OPEX.12.006606

2. Beggs, D. M., et al. "Ultra compact and low-power optical switch based on silicon photonic crystals," Optics Letters, Vol. 33, No. 2, 147-149, 2008.
doi:10.1364/OL.33.000147

3. Cho, S. Y. and R. Soref, "Interferometer microring-resonant 2 x 2 optical switches," Optics Express, Vol. 16, No. 17, 13304-13314, 2008.
doi:10.1364/OE.16.013304

4. Ridolfo, A., et al. "All optical switch of vacuum Rabi oscillations: The ultrafast quantum eraser," Phys. Rev. Lett., Vol. 106, No. 1, 013601, 2011.
doi:10.1103/PhysRevLett.106.013601

5. Lal, V., et al. "Monolithic wavelength converters for high-speed packet-switched optical networks," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 13, No. 1, 49-57, 2007.
doi:10.1109/JSTQE.2006.884406

6. Ebnali-Heidari, M., M. K. Moravvej-Farshi, and A. Zarifkar, "Multi channel wavelength conversion using fourth-order soliton decay," Journal of Lightwave Technology, Vol. 25, No. 9, 2571-2578, 2007.
doi:10.1109/JLT.2007.903556

7. Sherwood-Droz, N., et al. "Optical 4 x 4 hitless slicon router for optical networks-on-chip (NoC)," Optics Express, Vol. 16, No. 20, 15915-15922, 2008.
doi:10.1364/OE.16.015915

8. Bakhshi, S., M. K. Moravvej-Farshi, and M. Ebnali-Heidari, "Design of an ultracompact low-power all-optical modulator by means of dispersion engineered slow light regime in a photonic crystal Mach-Zehnder interferometer," Applied Optics, Vol. 51, No. 14, 2687-2692, 2012.
doi:10.1364/AO.51.002687

9. Lai, D. M., C. Kwok, and K. K. Wong, "All-optical picoseconds logic gates based on a fiber optical parametric amplifier," Optics Express, Vol. 16, No. 22, 18362-183670, 2008.
doi:10.1364/OE.16.018362

10. Gayen, D. K. and J. N. Roy, "All-optical arithmetic unit with the help of terahertz-optical-asymmetric-demultiplexer-based tree architecture," Applied Optics, Vol. 47, No. 7, 933-943, 2008.
doi:10.1364/AO.47.000933

11. Tu, X., F. Liu, and N. Xu, "Design of high channel-count optical fiber filters based on sampled Bragg grating with discrete linear chirp structure," Optics and Precision Engineering, 2010.

12. Bitarafan, M., M. Moravvej-Farshi, and M. Ebnali-Heidari, "Proposal for postfabrication fine-tuning of three-port photonic crystal channel drop filters by means of optofluidic infiltration," Applied Optics, Vol. 50, No. 17, 2622-2627, 2011.
doi:10.1364/AO.50.002622

13. Lu, H., et al. "Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator," Optics Express, Vol. 19, No. 4, 2910-2915, 2011.
doi:10.1364/OE.19.002910

14. Wu, , Y. D., et al. "All-optical switch based on the local nonlinear Mach-Zehnder interferometer," Optics Express, Vol. 15, No. 16, 9883-9892, 2007.
doi:10.1364/OE.15.009883

15. Camargo, E., H. Chong, and R. de la Rue, "2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure," Optics Express, Vol. 12, No. 4, 588-592, 2004.
doi:10.1364/OPEX.12.000588

16. Garzia, F., C. Sibilia, and M. Bertolotti, "Swing effect of spatial soliton," Optics Communications, Vol. 139, No. 4-6, 193-198, 1997.
doi:10.1016/S0030-4018(97)00128-4

17. Suryanto, A. and E. van Groesen, "On the swing effect of spatial inhomogeneous NLS solitons," Journal of Nonlinear Optical Physics and Materials, Vol. 10, No. 2, 143-152, 2001.
doi:10.1142/S0218863501000498

18. Suryanto, A. and E. van Groesen, "Break up of bound-N-spatial-soliton in a ramp waveguide," Optical and Quantum Electronics, Vol. 34, No. 5, 597-606, 2002.
doi:10.1023/A:1015685122513

19. Moravvej-Farshi, M., M. E. Heidari, and A. Zarifkar, "Spatial solitons in compound ramp waveguides," Proceedings of CAOL 2005 Second International Conference on Advanced Optoelectronics and Lasers, Vol. 2, 160-163, 2005.
doi:10.1109/CAOL.2005.1553946

20. Agrawal, G. P., Nonlinear Fiber Optics, 2nd Ed., Academic Press, 2001.

21. Agrawal, G. P., Fiber Optic Communication Systems, Wiley-Interscience, 2002.
doi:10.1002/0471221147

22. Ebnali-Heidari, M., M. K. Moravvej-Farshi, and A. Zarifkar, "Swing effect of spatial solitons propagating through Gaussian and triangular waveguides," Applied Optics, Vol. 48, No. 26, 5005-5014, 2009.
doi:10.1364/AO.48.005005

23. Aceves, A. B., J. V. Moloney, and A. C. Newell, "Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface," Phys. Rev. A, Vol. 39, 1809-1827, 1989.
doi:10.1103/PhysRevA.39.1809

24. Kuo, C. W., et al. "Analyzing multilayer optical waveguide with all nonlinear layers," Optics Express, Vol. 15, No. 5, 2499-2516, 2007.
doi:10.1364/OE.15.002499

25. Berrettini, G., et al. "Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate," IEEE Photonics Technology Letters, Vol. 18, No. 8, 917-919, 2006.
doi:10.1109/LPT.2006.873570

26. Niwa, S., et al. "Experimental demonstration of 1 x 4 InP/InGaAsP optical integrated multimode interference waveguide switch," 20th International Conference on Indium Phosphide and Related Materials, 2008, IPRM 2008, 1-4, 2008.
doi:10.1109/ICIPRM.2008.4702944

27. Scarmozzino, R., et al. "Numerical techniques for modeling guided-wave photonic devices," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 6, No. 1, 150-162, 2000.
doi:10.1109/2944.826883