Vol. 134
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-11-24
Development of a New Approach for High-Quality Quadrupling Frequency Optical Millimeter-Wave Signal Generation Without Optical Filter
By
Progress In Electromagnetics Research, Vol. 134, 189-208, 2013
Abstract
In this paper, we propose a new approach to generate quadrupling-frequency optical millimeter-wave (mm-wave) signal with carrier suppression by using two parallel Mach-Zehnder modulators (MZMs) in Radio-over-fiber (RoF) system. Among the numerous properties of this approach, the most important is that a filterless optical mm-wave at 60 GHz with an optical sideband suppression ratio (OSSR) as high as 40 dB can be obtained when the extinction ratio of the MZM is 25 dB. Simplicity and cost-effectiveness have made this approach a compelling candidate for future wave-division-multiplexing RoF systems. Theoretical analysis is conducted to suppress the undesired optical sidebands for the high-quality generation of frequency quadrupling mm-wave signal. The simulation results show that a 60 GHz mm-wave is generated from a 15 GHz radio frequency (RF) oscillator with an OSSR as high as 40 dB and an radio frequency spurious suppression ratio (RFSSR) exceeding 35 dB without any optical or electrical filter when the extinction ratio of the MZM is 25 dB. Furthermore, the effect of the non-ideal RF-driven voltage as well as the phase difference of RF-driven signals applied to the two MZMs on OSSR and RFSSR is discussed and analyzed. Finally, we establish a RoF system through simulation to verify the transmission performance of the proposed scheme. The Q-factor performance and eye patterns are given.
Citation
Nael Ahmed Al-Shareefi, Syed Idris Syed Hassan, Mohd Fareq Bin Abd Malek, Razali Ngah, Syed Alwee Aljunid, Rashid Ali Fayadh, Jaafar Adhab, and Hasliza A. Rahim, "Development of a New Approach for High-Quality Quadrupling Frequency Optical Millimeter-Wave Signal Generation Without Optical Filter," Progress In Electromagnetics Research, Vol. 134, 189-208, 2013.
doi:10.2528/PIER12100411
References

1. Ogawa, H. and D. Polifko, "Fiber optic millimeter-wave subcarrier transmission links for personal radio communication systems," IEEE MTT-S International Microwave Symposium Digest, 555-558, 1992.

2. Anang, K. A., P. B. Rapajic, L. Bello, and R. Wu, "Sensitivity of cellular wireless network performance to system & propagation parameters at carrier frequencies greater than GHz," Progress In Electromagnetics Research B, Vol. 40, 31-54, 2012.

3. Choudhury, P. K. and W. K. Soon, "On the tapered optical fibers with radially anisotropic liquid crystal clad," Progress In Electromagnetics Research, Vol. 115, 461-475, 2011.

4. Huang, T. Y. and T. J. Yen, "A high-ratio bandwidth square-wave-like bandpass filter by two-handed metamaterials and its application in 60 GHz wireless communication," Progress In Electromagnetics Research Letters, Vol. 21, 19-29, 2011.

5. Choudhury, P. K., "Transmission through twisted clad liquid crystal optical fibers," Progress In Electromagnetics Research, Vol. 131, 169-184, 2012.

6. Sarrazin, T., H. Vettikalladi, O. Lafond, M. Himdi, and N. Rolland, "Low cost 60 GHz new thin Pyralux membrane antennas fed by substrate integrated waveguide," Progress In Electromagnetics Research B, Vol. 42, 207-224, 2012.

7. Navarro-Cia, M., V. Torres Landivar, M. Beruete, and M. Sorolla Ayza, "A slow light fishnet-like absorber in the millimeter-wave range," Progress In Electromagnetic Research, Vol. 118, 287-301, 2011.
doi:10.2528/PIER11053105

8. Deruyck, M., W. Vereecken, W. Joseph, B. Lannoo, M. Pickavet, and L. Martens, "Reducing the power consumption in wireless access networks: Overview and recommendations," Progress In Electromagnetics Research, Vol. 132, 255-274, 2012.

9. Harun, A., D. L. Ndzi, M. F. Ramli, A. Y. M. Shakaff, M. N. Ahmad, L. M. Kamarudin, A. Zakaria, and Y. Yang, "Signal propagation in aquaculture environment for wireless sensor network applications," Progress In Electromagnetics Research, Vol. 131, 477-494, 2012.

10. Alejos, A. V., M. Dawood, and L. Medina, "Experimental dynamical evolution of the Brillouin precursor for broadband wireless communication through vegetation," Progress In Electromagnetics Research, Vol. 111, 291-309, 2011.
doi:10.2528/PIER10100706

11. Ndzi, D. L., M. A. M. Arif, A. Y. M. Shakaff, M. N. Ahmad, A. Harun, L. M. Kamarudin, A. Zakaria, M. F. Ramli, and M. S. Razalli, "Signal propagation analysis for low data rate wireless sensor network applications in sport grounds and on roads," Progress In Electromagnetics Research, Vol. 125, 1-19, 2012.
doi:10.2528/PIER11111406

12. Lin, C. T., et al., "Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering," IEEE Photonics Technology Letters, Vol. 20, 1027-1029, 2008.
doi:10.1109/LPT.2008.923739

13. Kotb, H. E., M. Y. Shalaby, and M. H. Ahmed, "Generation of nanosecond optical pulses with controlled repetition rate using incavity intensity modulated brillouin erbium fiber laser," Progress In Electromagnetics Research, Vol. 113, 313-331, 2011.

14. Calo, G., D. Alexandropoulos, and V. Petruzzelli, "Active WDM filter on dilute nitride quantum well photonic band gap waveguide," Progress In Electromagnetics Research Letters, Vol. 35, 37-49, 2012.

15. Jia, Z., et al., "Key enabling technologies for optical wireless networks: Optical millimeter-wave generation, wavelength reuse, and architecture," Journal of Lightwave Technology, Vol. 25, 3452-3471, 2007.
doi:10.1109/JLT.2007.909201

16. Kumar, A., B. Suthar, V. Kumar, K. S. Singh, and A. Bhargava, "Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal," Progress In Electromagnetics Research Letters, Vol. 33, 27-35, 2012.

17. Kapilevich, B. , B. Litvak, "Noise versus coherency in mm-wave and microwave scattering from nonhomogeneous materials," Progress In Electromagnetics Research B, Vol. 28, 35-54, 2011.

18. Yu, J., J., et al., "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photonics Technology Letters, Vol. 18, 265-267, 2006.
doi:10.1109/LPT.2005.862006

19. Ma, J., et al., "Optical mm-wave generation by using external modulator based on optical carrier suppression," Optics Communications, Vol. 268, 51-57, 2006.
doi:10.1016/j.optcom.2006.07.012

20. Zavargo-Peche, L., A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, "Fourier based combined techniques to design novel sub-wavelength optical integrated devices," Progress In Electromagnetics Research, Vol. 123, 447-465, 2012.
doi:10.2528/PIER11072907

21. Qi, G., et al., "Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 3090-3097, 2005.
doi:10.1109/TMTT.2005.855123

22. Liu, J., L. Zhang, S.-H. Fan, C. Guo, S. He, and G.-K. Chang, "A novel architecture for peer-to-peer interconnect in millimeter-wave radio-over-fiber access networks," Progress In Electromagnetics Research, Vol. 126, 139-148, 2012.
doi:10.2528/PIER12012701

23. Qi, G., et al., "Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator," Journal of Lightwave Technology, Vol. 23, 2687-2695, 2005.
doi:10.1109/JLT.2005.854067

24. Wang, H., B. Yan, Z. Wang, and R.-M. Xu, "A broadband microwave gain equalizer," Progress In Electromagnetics Research Letters, Vol. 33, 63-72, 2012.

25. Ou, H., et al., "Microwave-photonic frequency doubling utilising phase modulator and fibre Bragg grating," Electronics Letters, Vol. 44, 131-133, 2008.
doi:10.1049/el:20083046

26. Chen, L., et al., "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photonics Technology Letters, Vol. 18, 2056-2058, 2006.
doi:10.1109/LPT.2006.883293

27. Zakeri, B. G., M. R. Zahabi, and S. Alighale, "Sidelobes level improvement by using a new scheme used in microwave pulse compression radars," Progress In Electromagnetics Research Letters, Vol. 30, 81-90, 2012.
doi:10.2528/PIERL12011102

28. He, J., et al., "Full-duplex radio-over-fiber system with photonics frequency quadruples for optical millimeter-wave generation," Optical Fiber Technology, Vol. 15, 290-295, 2009.
doi:10.1016/j.yofte.2008.12.006

29. Yu, J., et al., "Centralized lightwave radio-over-fiber system with high-frequency optical millimeter-wave generation by low-frequency and low-bandwidth optical and electrical sources," IEEE International Topical Meeting on Microwave Photonics, 127-129, 2007.

30. Zhang, J., et al., "42.13 Gbit/s 16QAM-OFDM photonics-wireless transmission in 75-110 GHz band," IEEE Photonics Technology Letters, Vol. 19, 1057-1059, 2007.
doi:10.1109/LPT.2007.899462

31. Zhang, J., et al. "A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression," IEEE Photonics Technology Letters, Vol. 19, 1057-1059, 2007.
doi:10.1109/LPT.2007.899462

32. Lu, H. H., et al., "Radio-over-fiber transport systems based on dfb ld with main and -1 side modes injection-locked technique," Progress In Electromagnetics Research Letters, Vol. 7, 25-33, 2009.
doi:10.2528/PIERL09011604

33. Chen, et al., "A novel optical mm-wave generation scheme based on three parallel Mach-Zehnder modulators," Optics Communications, Vol. 284, 1159-1169, 2011.
doi:10.1016/j.optcom.2010.11.012

34. Zhao, Y., et al., "Simplified optical millimeter-wave generation configuration by frequency quadrupling using two cascaded Mach-Zehnder modulators," Optics Letters, Vol. 34, 3250-3252, 2009.
doi:10.1364/OL.34.003250

35. Liu, X., et al., "Frequency quadrupling using an integrated Mach-Zehnder modulator with four arms," Optics Communications, Vol. 284, 4052-4058, 2011.
doi:10.1016/j.optcom.2011.04.008

36. Błahut, M. and A. Opilski, "Multimode interference structures - New way of passive elements technology for photonics," Opto-electronics Review, Vol. 9, 293-300, 2001.

37. Ma, J., et al., "Fiber dispersion influence on transmission of ," Journal of Lightwave Technology, Vol. 25, 3244-3256, 2007.
doi:10.1109/JLT.2007.907794