Vol. 133
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-11-08
Compact and High Isolation Microstrip Diplexer for Broadband and WLAN Application
By
Progress In Electromagnetics Research, Vol. 133, 555-570, 2013
Abstract
In this paper, a compact and high isolation microstrip diplexer is designed for broadband and wireless local area network (WLAN) application, simultaneously. The bandpass filter (BPF) for broadband channel is formed by three-coupled-line structure and two short stubs with different size loaded in 50 feed lines, and the BPF for WLAN channel consists of two coupling quarter-wavelength resonators (QWR) and one open stub loaded in short parallel-coupling feed structure. Multiple transmission zeros can be generated due to their intrinsic characteristics, so the broadband BPF with sharp skirt and wide upper-stopband performance and the WLAN BPF with sharp roll-off and lower-stopband characteristic can be realized. The tapped stub not only can generate transmission zeros to deepen the stopband, but also can connect other BPF as an its part without deterioration of in-band performance. Hence, a compact microstrip diplexer combines of two BPFs without the extra junction matching network. The mutual loading effect approximately equivalent to a coupled short QWR can also generate new transmission zero at the passband edge to improve the isolation. A microstrip diplexer with the 3 dB fractional bandwidth (FBW) of 80% for broadband channel and 5% for WLAN channel is designed and fabricated. Good agreement between the simulated and measured results is observed.
Citation
Hong-Wei Deng, Yong-Jiu Zhao, Yong Fu, Ji Ding, and Xiao-Jun Zhou, "Compact and High Isolation Microstrip Diplexer for Broadband and WLAN Application," Progress In Electromagnetics Research, Vol. 133, 555-570, 2013.
doi:10.2528/PIER12092303
References

1. Pozar, D. M., Microwave Engineering, Wiley, New York, 1998.
doi:10.1109/13.53636

2. Matthaei, G. and E. G. Cristal, "Multiplexer channel-separating units using interdigital and parallel-coupled filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 13, 328-334, 1965.
doi:10.1109/TMTT.1965.1125997

3. Wenzel, R. J., "Printed-circuit complementary filters for narrow bandwidth multiplexers ," IEEE Transactions on Microwave Theory and Techniques, Vol. 16, 147-157, 1968.
doi:10.1109/TMTT.1968.1126635

4. Wang, R., J. Xu, M. Y. Wang, and Y. L. Dong, "Synthesis of microstrip resonator diplexers using linear frequency transformation and optimization," Progress In Electromagnetics Research, Vol. 124, 441-455, 2012.
doi:10.2528/PIER12011108

5. Yang, T., P. L. Chi, and T. Itoh, "High isolation and compact diplexer using the hybrid resonators," IEEE Microstrip and Wireless Components Letters, Vol. 20, No. 10, 551-553, 2010.
doi:10.1109/LMWC.2010.2052793

6. Huang, C. Y., M. H. Weng, C. S. Ye, and Y. X. Xu, "A high band isolation and wide stopband diplexer using dual-mode stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 100, 299-308, 2010.
doi:10.2528/PIER09112701

7. Yang, R. Y., C. M. Hsiung, C. Y. Hung, and C. C. Lin, "Design of a high band isolation diplexer for GPS and WLAN system using modified stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 107, 101-114, 2010.
doi:10.2528/PIER10060913

8. Shi, J., J. X. Chen, and Z. H. Bao, "Diplexers based on microstrip line resonators with loaded elements," Progress In Electromagnetics Research, Vol. 115, 423-439, 2011.

9. Zeng, H. Y., G. M. Wang, D. Z. Wei, and Y. W. Wang, "Planar diplexer using composite right-/left-handed transmission line under balanced condition," Electronics Letters, Vol. 48, No. 2, 104-106, 2012.
doi:10.1049/el.2011.2763

10. Lin, Y.-L., S.-W. Lan, R.-Y. Yang, and C.-Y. Hung, "Design of a high band-isolation diplexer based on asymmetric stepped-impedance resonators with side-coupling structure," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 1, 1-11, 2012.

11. Chen, C.-Y. and C.-C. Lin, "The design and fabrication of a highly compact microstrip dual-band bandpass filter," Progress In Electromagnetics Research, Vol. 112, 299-307, 2011.

12. Rezaee, P., M. Tayarani, and R. Knöchel, "Active learning method for the determination of coupling factor and external Q in microstrip filter design," Progress In Electromagnetics Research, Vol. 120, 459-479, 2011.

13. Chen, C. F., T. Y. Huang, C. P. Chou, and R. B. Wu, "Microstrip diplexers design with common resonator sections for compact size, but high isolation," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, 1945-1952, 2006.
doi:10.1109/TMTT.2006.873613

14. Yang, T. P., L. Chi, and T. Itoh, "Compact quarter-wave resonator and its applications to miniaturized diplexer and triplexer," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 2, 260-269, 2011.
doi:10.1109/TMTT.2010.2095029

15. Chuang, M. L. and M. T. Wu, "Microstrip diplexer design using common T-shaped resonator," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 11, 583-585, 2011.
doi:10.1109/LMWC.2011.2168949

16. Chen, C.-F., "Miniaturized and high isolation microstrip diplexers based on the tri-mode stubloaded stepped-impedance resonators," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 2001-2011, 2012.
doi:10.1080/09205071.2012.724155

17. Garcia-Lamperez, A., M. Salazar-Palma, and T. K. Sarkar, "Analytical synthesis of microwave multiport networks," IEEE MTT-S Int. Microwave Symp. Digest, 455-458, 2004.

18. Skaik, T. F., M. J. Lancaster, and F. Huang, "Synthesis of multiple output coupled resonator circuits using coupling matrix optimisation," IET Microwaves, Antennas and Propagation, Vol. 5, No. 9, 1081-1088, 2011.
doi:10.1049/iet-map.2010.0447

19. Skaik, T. F. and M. J. Lancaster, "Coupled resonator diplexer without external junctions," Journal of Electromagnetic Analysis and Applications, Vol. 3, No. 6, 238-241, 2011.
doi:10.4236/jemaa.2011.36038

20. An, J., G. M. Wang, C. X. Zhang, and P. Zhang, "Diplexer using composite right-/left-handed transmission line," Electronics Letters, Vol. 44, No. 11, 685-687, 2008.
doi:10.1049/el:20083730

21. Dong, Y. D. and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators for miniaturized diplexer design," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 1, 10-12, 2011.
doi:10.1109/LMWC.2010.2091263

22. Quan, X. L., R.-L. Li, J. Y. Wang, and Y. H. Cui, "Development of a broadband horizontally polarized omnidirectional planar antenna and its array for base stations," Progress In Electromagnetics Research, Vol. 128, 441-456, 2012.

23. Islam, M. T., R. Azim, and A. T. Mobashsher, "Triple band-notched planar UWB antenna using parasitic strips," Progress In Electromagnetics Research, Vol. 129, 161-179, 2012.

24. Russo, I., L. Boccia, G. Amendola, and H. Schumacher, "Compact hybrid coaxial architecture for 3-10 GHz UWB quasi-optical power combiners," Progress In Electromagnetics Research, Vol. 122, 77-92, 2012.
doi:10.2528/PIER11101704

25. Azim, R. and M. T. Islam, "Compact planar UWB antenna with band notch characteristics for WLAN and DSRC," Progress In Electromagnetics Research, Vol. 133, 391-406, 2013.

26. Ye, C. S., Y. K. Su, M. H. Weng, and C. Y. Hung, "A microstrip ring-like diplexer for bluetooth and UWB application," Microwave and Optical Technology Letters, Vol. 51, No. 6, 1518-1520, 2009.
doi:10.1002/mop.24358

27. Weng, M. H., C. Y. Hung, and Y. K. Su, "A hairpin line diplexer for direct sequence ultra-wideband wireless communications," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 7, 519-521, 2007.
doi:10.1109/LMWC.2007.899315

28. Ma, D., Z. Y. Xiao, L. Xiang, X. Wu, C. Huang, and X. Kou, "Compact dual-band bandpass filter using folded SIR with two stubs for WLAN," Progress In Electromagnetics Research, Vol. 117, 357-364, 2011.

29. Panda, J. R. and R. S. Kshetrimayum, "A printed 2.4 GHz/5.8 GHz dual-band monopole antenna with a protruding stub in the ground plane for WLAN and RFID applications," Progress In Electromagnetics Research, Vol. 117, 425-434, 2011.

30. Nguyen, C. and K. Chang, "On the analysis and design of spurline band-stop filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 33, No. 12, 1416-1421, 1985.
doi:10.1109/TMTT.1985.1133233

31. Song, K. and Q. Xue, "Novel broadband bandpass filters using Y-shaped dual-mode microstrip resonators," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 9, 548-550, 2009.
doi:10.1109/LMWC.2009.2027058

32. Deng, H. W., Y. J. Zhao, X. S. Zhang, W. Chen, and L. Qiang, "Compact and high selectivity broadband bandpass filter with dual-mode folded-T-type resonator," Microwave and Optical Technology Letters, Vol. 53, No. 8, 1697-1700, 2011.
doi:10.1002/mop.26108

33. Dai, G. L., Y. X. Guo, and M. Y. Xia, "Design of compact bandpass filter with improved selectivity using source-load coupling," Electronics Letters, Vol. 46, No. 7, 505-506, 2010.
doi:10.1049/el.2010.2841