Vol. 46
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-11-29
Excitation of Azimuthal Eigen Modes by Modulated Annular Electron Beam
By
Progress In Electromagnetics Research B, Vol. 46, 159-175, 2013
Abstract
Excitation of extraordinarily polarized azimuthal eigen modes by modulated annular electron beam is shown to be characterized by the increase of instability growth rates compared with the case of non-modulated electron beam. Interaction between the modulated beam and azimuthal eigen modes happens in the range of electron cyclotron frequency in waveguides with metal walls, which are partially filled with cold magneto-active plasma. Non-linear set of differential equations, which describs excitation of these azimuthal modes by an annular electron beam is derived and analyzed numerically. Different scenarios of the beam-plasma interaction depending on relation between azimuthal mode number of the exited waves and periodicity of azimuthal modulation of the beam density, degree and manner of the beams' modulation are studied numerically.
Citation
Volodymyr Girka, Sergey Yu. Puzyrkov, and Oleksandr Yu. Nefodov, "Excitation of Azimuthal Eigen Modes by Modulated Annular Electron Beam," Progress In Electromagnetics Research B, Vol. 46, 159-175, 2013.
doi:10.2528/PIERB12092002
References

1. Bogdankevich, L. S., M. V. Kuzelev, and A. A. Rukhadze, "Plasma SHF electronics," Physics-Uspekhi, Vol. 133, 3-16, 1981.
doi:10.3367/UFNr.0133.198101a.0003

2. Humphries, S., Charged Particle Beams, John Wiley and Sons Inc., New York , 1990.

3. Vlasov, A. N., A. G. Shkvarunets, and J. Rodgers, "Overmoded GW-class surface waves microwave oscillators," Special Issue of IEEE-PS on High-power Microwave Generators, Vol. 28, 550-560, 2000.

4. Barker, R. J. and E. Schamiloglu, High-power Microwave Sources and Technologies, New-York, 2001.
doi:10.1109/9780470544877

5. Ederra, I., J. C. Iriarte, R. Gonzalo, and P. de Maagt, "Surface waves of finite size electromagnetic band gap woodpile structures," Progress In Electromagnetics Research B, Vol. 28, 19-34, 2011.

6. Girka, V. O., I. O. Girka, A. V. Girka, and I. V. Pavlenko, "Theory of azimuthal surface waves propagating in non-uniform waveguides," Journal of Plasma Physics, Vol. 77, Part 4, 493-519, 2010.

7. Girka, I. O., V. O. Girka, and I. V. Pavlenko, "Excitation of ion azimuthal surface modes in a magnetized plasma by annular flows of light ions," Progress In Electromagnetics Research M, Vol. 21, 267-278, 2011.
doi:10.2528/PIERM11092205

8. Fujiwara, M., O. Komeko, A. Komori, et al. "Experiments on NBI plasmas in LHD," Plasma Phys. Control. Fusion, Vol. 41, No. 12B, 157-166, 1999.
doi:10.1088/0741-3335/41/12B/311

9. Sircombe, N. J., R. Bingham, M. Sherlock, et al. "Plasma heating by intense electron beams in fast ignition," Plasma Phys. Control. Fusion, Vol. 50, No. 6, 065005, 2008.
doi:10.1088/0741-3335/50/6/065005

10. Wu, J., C. Xiong, and S. Liu, "Excitation of microwave by an annular electron beam in a plasma-filled dielectric lined waveguide," International Journal of Infrared and Millimeter Waves, Vol. 16, No. 9, 1573-1581, 1995.
doi:10.1007/BF02274817

11. Legenkiy, M. N. and A. Y. Butrym, "Pulse signals in open circular dielectric waveguide," Progress In Electromagnetics Research Letters, Vol. 22, 9-17, 2011.

12. Norreys, P. A., J. S. Green, J. R. Davies, et al. "Observation of annular electron beam transport in multi-TeraWatt laser-solid interactions," Plasma Phys. Control. Fusion, Vol. 48, No. 2, L11-L22, 2006.
doi:10.1088/0741-3335/48/2/L01

13. Lau, Y. Y., "Radiation generated by rotating electron beams," Proceed. Symp. Non-Neutral Plasma Physics, 210-223, Washington, USA, 1988.

14. Kainer, S., J. D. Gaffey, C. P. Price, et al. "Nonlinear wave interactions and evolutions of a ring-beam distribution of energetic electrons," Phys. Fluids, Vol. 31, No. 8, 2283-2284, 1988.
doi:10.1063/1.867003

15. Kho, T. H., A. T. Lin, and L. Chen, "Gyrophase-coherent electron cyclotron maser," Phys. Fluids, Vol. 31, No. 10, 3120-3126, 1988.
doi:10.1063/1.866968

16. Kapitanov, A. N., N. V. Obraztsov, L. A. Sukhanova, et al. "Solution of a set of Maxwell-Lorentz equations for a ring relativistic electron beam," Plasma Physics Reports, Vol. 35, No. 6, 510-517, 2009.
doi:10.1134/S1063780X09060087

17. Girka, V. O., I. O. Girka, and I. V. Pavlenko, "Excitation of azimuthal surface modes by relativistic flows of electrons in high-frequency range," Plasma Physics Reports, Vol. 37, No. 5, 447-454, 2011.
doi:10.1134/S1063780X11040052

18. Girka, V. O. and S. Yu. Puzyrkov, "Nonlinear interaction of an annular electron beam with azimuthal surface waves," Plasma Physics Reports, Vol. 28, No. 4, 351-358, 2002.
doi:10.1134/1.1469176

19. Kirichenko, Y. V., "Generation and amplification of electromagnetic waves by an annular electron beam in a radial electric field in free space," Technical Physics, Vol. 45, No. 8, 1096-1097, 2000.
doi:10.1134/1.1307027

20. Malek, M. F. B. A., J. Lucas, and Y. Huang, "The engineering and construction of a pre-bunched free electron maser," Progress In Electromagnetics Research, Vol. 95, 19-38, 2009.
doi:10.2528/PIER09060803

21. Anisimov, I. O., M. J. Soloviova, "The evolution of a modulated electron beam in a dense plasma barrier," Plasma Phys. Control. Fusion, Vol. 53, No. 7, 074007, 2011.
doi:10.1088/0741-3335/53/7/074007

22. Korenev, B. G., Bessel Functions and Their Applications, Chapmen & Hall/CRC Press LLC, Bora Raton, Florida , 2002.

23. Krall, N. A. and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, New York, 1973.