Vol. 133
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-11-05
Wideband Millimeter-Wave Cavity-Backed Bowtie Antenna
By
Progress In Electromagnetics Research, Vol. 133, 477-493, 2013
Abstract
Although many directive antennas operating in a narrow band of millimeter (mm) waves were reported, e.g., antennas for 60-GHz wireless local area network (WLAN), their wideband counterparts are still unpopular. Cavity-backed antennas (CBAs) are widely developed and reported in microwave frequency bands, but few literatures can be found about mm-wave CBAs in spite that their many properties are quite suitable for mm-wave applications. This paper presents a wideband unidirectional CBA with a bowtie exciter, operating in a frequency band of 40 ~ over 75 GHz, and it is carefully analyzed in terms of influences of all antenna components on radiation patterns, broadside gains, and reflection coefficients. Then, the antenna prototype is built by generic printed circuit board (PCB) technologies, and measurements prove the validity of simulations.
Citation
Shi-Wei Qu, and Kung Bo Ng, "Wideband Millimeter-Wave Cavity-Backed Bowtie Antenna," Progress In Electromagnetics Research, Vol. 133, 477-493, 2013.
doi:10.2528/PIER12091202
References

1. Soliman, E. A., et al. "Series-fed microstrip antenna arrays operating at 26 GHz," IEEE Int. Symp. Antennas Propagat. Soc., 1-4, 2010.

2. Huang, K.-C. and D. J. Edwards, Millimetre Wave Antennas for Gigabit Wireless Communications, John Wiley & Sons Ltd., United Kingdom, 2008.

3. Kolak, F. and C. Eswarappa, "A low profile 77 GHz three beam antenna for automotive radar," IEEE MTT-S Int Microw. Symp. Digest, Vol. 2, 1107-1110, 2001.

4. Rebollo, A., et al. "A broadband radiometer configuration at 94 GHz in planar technology," IEEE MTT-S Int. Microw. Workshop Series on Millimeter Wave Integration Technol. IMWS), 89-92, 2011.

5. Schulwitz, L. and A. Mortazawi, "Millimeter-wave dual polarized L-shaped horn antenna for wide-angle phased arrays," IEEE Trans. on Antennas and Propagat., Vol. 54, No. 9, 2663-2668, Sept. 2006.
doi:10.1109/TAP.2006.880761

6. Xu, O., "Diagonal horn gaussian e±ciency enhancement by dielectric loading for submillimeter wave application at 150 GHz," Progress In Electromagnetics Research, Vol. 114, 177-194, 2011.

7. Miura, Y., et al. "Double-layer full-corporate-feed hollow waveguide slot array antenna in the 60-GHz band," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 8, 2844-2851, Aug. 2011.
doi:10.1109/TAP.2011.2158784

8. Bakhtafrooz, A. and A. Borj, "Novel two-layer millimeter-wave slot array antennas based on substrate integrated waveguides," Progress In Electromagnetics Research, Vol. 109, 475-491, 2010.
doi:10.2528/PIER10091706

9. Pan, Y.-M., et al. "Design of the millimeter-wave rectangular dielectric resonator antenna using a higher-order mode," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 8, 2780-2788, Sept. 1983 Aug. 2011.
doi:10.1109/TAP.2011.2158962

10. Perron, A., et al. "High-gain hybrid dielectric resonator antenna for millimeter-wave applications: Design and implementation," IEEE Trans. on Antennas and Propagat., Vol. 57, No. 10, 2882-2992, Oct. 2009.
doi:10.1109/TAP.2009.2029292

11. Cui, B., C. Wang, and X.-W. Sun, "Microstrip array double-antenna (MADA) technology applied in millimeter wave compact radar front-end," Progress In Electromagnetics Research, Vol. 66, 125-136, 2006.
doi:10.2528/PIER06110902

12. Nesic, A., et al. "Millimeter wave printed antenna array with high side lobe suppression ," IEEE Int. Symp. Antennas Propagat. Soc., 3051-3054, 2006.

13. Pozar, D. M., "Considerations for millimeter wave printed antennas," IEEE Trans. on Antennas and Propagat., Vol. 31, No. 5, 740-747.
doi:10.1109/TAP.1983.1143124

14. Costanzo, S., I. Venneri, G. D. Massa, and G. Amendola, "Hybrid array antenna for broadband millimeter-wave applications," Progress In Electromagnetics Research, Vol. 83, 173-183, 2008.
doi:10.2528/PIER08051404

15. Douvalis, V., et al. "A monolithic active conical horn antenna array for millimeter and submillimeter wave applications," IEEE Trans. on Antennas and Propagat., Vol. 54, No. 5, 1393-1398, May 2006.
doi:10.1109/TAP.2006.874338

16. Nguyen, T. K., T. A. Ho, I. Park, and H. Han, "Full-wavelength dipole antenna on a GaAs membrane covered by a frequency selective surface for a terahertz photomixer," Progress In Electromagnetics Research, Vol. 131, 441-455, 2012.

17. Matekovits, L., M. Heimlich, and K. P. Esselle, "Metamaterial-based millimeter-wave switchable leaky wave antennas for on-chip implementation in GaAs technology," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 49-61, 2011.
doi:10.1163/156939311793898260

18. Yeap, S. B., et al. "Gain-enhanced 60-GHz LTCC antenna array with open air cavities," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 9, 3470-3473, Sept. 2011.
doi:10.1109/TAP.2011.2161549

19. De Lange, G., et al. "Development of a 3×3 micromachined millimeter wave SIS imaging array," IEEE Trans. on Appl. Superconductivity, Vol. 7, No. 2, 3593-3597, Jun. 1997.
doi:10.1109/77.622179

20. Camblor-Diaz, R., S. Ver-Hoeye, C. Vazquez-Antuna, G. R. Hotopan, M. G. Fernandez, and F. Las-Heras, "Sub-millimeter wave frequency scanning 8×1 antenna array," Progress In Electromagnetics Research, Vol. 132, 215-232, 2012.

21. Kramer, O., et al. "Very small footprint 60 GHz stacked Yagi antenna array," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 9, 3204-3210, Sept. 2011.
doi:10.1109/TAP.2011.2161562

22. Hayashi, Y., et al. "Millimeter-wave microstrip comb-line antenna using reflection-canceling slit structure," IEEE Trans. on Antennas and Popagat., Vol. 59, No. 2, 398-406, Feb. 2011.
doi:10.1109/TAP.2010.2096180

23. Akkermans, J. A. G., et al. "Balanced-fed planar antenna for millimeter-wave transceivers," IEEE Trans. on Antennas and Propagat., Vol. 57, No. 10, 2871-2881, Oct. 2009.
doi:10.1109/TAP.2009.2029278

24. Seki, T., et al. "Millimeter-wave high-efficiency multilayer parasitic microstrip antenna array on teflon substrate," IEEE Trans. on Antennas and Propagat., Vol. 53, No. 6, 2101-2106, Jun. 2005.

25. Thakur, J. P., W.-G. Kim, and Y.-H. Kim, "Large aperture low aberration aspheric dielectric lens antenna for W-band quasi-optics," Progress In Electromagnetics Research, Vol. 103, 57-65, 2010.
doi:10.2528/PIER10022404

26. Hua, C. Z., X. D. Wu, N. Yang, and W. Wu, "Millimeter-wave homogenous cylindrical lens antenna for multiple fan-beam scanning," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1922-1929, 2012.
doi:10.1080/09205071.2012.721181

27. Kamchouchi, H. E. and G. Abouelseoud, "A novel approach to multiband- ultra-wideband millimeter wave antennas design based on repeated kernel array of microstrip patches (ReKAMP)," IEEE Int. Symp. Antennas Propagat. Soc., 246-249, 2005.

28. Kumar, A. and H. D. Hristov, Microwave Cavity Antennas, Artech House, Norwood, MA, 1989.

29. Li, R., D. Thompson, et al. "Development of a wide-band short backfire antenna excited by an unbalance-fed H-shaped slot," IEEE Trans. on Antennas and Propagat., Vol. 53, No. 2, 662-671, Feb. 2005.
doi:10.1109/TAP.2004.841291

30. Li, R., D. Thompson, et al. "A circularly polarized short backfire antenna excited by an unbalance-fed cross aperture," IEEE Trans. on Antennas and Propagat., Vol. 54, No. 3, 852-859, Mar. 2006.
doi:10.1109/TAP.2006.869910

31. Ou Yang, J., S. Bo, J. Zhang, and F. Yang, "A low-profile unidirectional cavity-backed log-periodic slot antenna," Progress In Electromagnetics Research, Vol. 119, 423-433, 2011.
doi:10.2528/PIER11070503

32. Wang, F. J. and J.-S. Zhang, "Wideband cavity-backed patch antenna for PCS/IMT2000/2.4 GHz WLAN," Progress In Electromagnetics Research, Vol. 74, 39-46, 2007.
doi:10.2528/PIER07041801

33. Qu, S.-W., "Study on wideband cavity-backed bowtie antennas," Ph.D. Dissertation, The City University of Hong Kong, 2009.

34. Hua, C. Z., X. D. Wu, and W. Wu, "A cavity-backed aperture-coupled microstrip patch antenna array with sum/difference beams," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 7, 932-941, 2012.
doi:10.1080/09205071.2012.710381

35. Grzyb, J., et al. "Wideband cavity-backed folded dipole superstrate antenna for 60 GHz applications," IEEE Int. Symp. Antennas Propagat. Soc., 3939-3942, 2006.

36. Qu, S.-W., et al. "Wideband cavity-backed bowtie antenna with pattern improvement," IEEE Trans. on Antennas and Propagat., Vol. 56, No. 12, 3850-3854, Dec. 2008.
doi:10.1109/TAP.2008.2007395

37. Qu, S.-W. and C.-L. Ruan, "Effect of round corners on bowtie antennas," Progress In Electromagnetics Research, Vol. 57, 179-195, 2006.
doi:10.2528/PIER05072103

38. Qu, S.-W., et al. "Ultrawideband composite cavity-backed folded sectorial bowtie antenna with stable pattern and high gain ," IEEE Trans. on Antennas and Propagat., Vol. 57, No. 8, 2478-2483, Aug. 2009.
doi:10.1109/TAP.2009.2024585

39. Qu, S.-W., C. H. Chan, and Q. Xue, "Ultrawideband composite cavity-backed rounded triangular bowtie antenna with stable patterns," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 685-695, 2009.
doi:10.1163/156939309788019930

40. Lee, J., et al. "A low-power low-cost fully integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly," IEEE J. Solid-State Circuits, Vol. 45, No. 2, 264-275, Feb. 2010.
doi:10.1109/JSSC.2009.2034806