Vol. 36
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-12-04
A New Method of Evaluating Reverberation Chamber q -Factor with Experimental Validation
By
Progress In Electromagnetics Research Letters, Vol. 36, 103-112, 2013
Abstract
Through exploring the relationship between the Q-factor and the normalized electric field strength of a reverberation chamber, this contribution proposes a new kind of methods for the Q-factor estimation, which can simplify the procedure of measuring Q-factor in experiment and raise the e±ciency of calculating Q-factor by simulation. Firstly, the method is validated using measured electric field, then it is verified using data from RC's simulation by FDTD. Satisfactory agreements confirm this kind of methods could act as a reliable tool in evaluating Q-factor by both experimental measurement and numerical simulation.
Citation
Song Wang, Zhan Cheng Wu, Guang Hui Wei, Yao Zhong Cui, and Li Si Fan, "A New Method of Evaluating Reverberation Chamber q -Factor with Experimental Validation," Progress In Electromagnetics Research Letters, Vol. 36, 103-112, 2013.
doi:10.2528/PIERL12090710
References

1. Mariani Primiani, V. and F. Moglie, "Numerical simulation of LOS and NLOS conditions for an antenna inside a reverberation chamber," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2319-2331, 2010.
doi:10.1163/156939310793675600

2. Moglie, F., V. Mariani Primiani, and A. P. Pastore, "Modeling of the human exposure inside a random plane wave field," Progress In Electromagnetics Research B, Vol. 29, 251-267, 2011.
doi:10.2528/PIERB11022506

3. Hill, D. A., "A reflection coefficient derivation for the Q of reverberation chamber," IEEE Trans. Electromagn. Compat., Vol. 38, No. 4, 591-592, 1996.
doi:10.1109/15.544314

4. Corona, P., G. Ferrara, and M. Migliaccio, "A spectral approach for the determination of the reverberating chamber quality factor," IEEE Trans. Electromagn. Compat., Vol. 40, No. 2, 145-153, 1998.
doi:10.1109/15.673620

5. Arnaut, R., "Statistics of the quality factor of a rectangular reverberation chamber," IEEE Trans. Electromagn. Compat., Vol. 45, No. 1, 61-76, 2003.
doi:10.1109/TEMC.2002.808021

6. Hill, D. A., M. T. Ma, and A. R. Ondrejka, "Aperture excitation of electrically large, lossy cavities," IEEE Trans. Electromagn. Compat., Vol. 34, No. 3, 169-178, 1994.
doi:10.1109/15.305461

7. Robinson, M. and J. Clegg, "Improved determination of Q-factor and resonant frequency by a quadratic curve-fitting method," IEEE Trans. Electromagn. Compat., Vol. 47, No. 2, 399-402, 2005.
doi:10.1109/TEMC.2005.847411

8. Mariani, P. V. and F. Moglie, "Numerical simulation of reverberation chamber parameters affecting the received power statistics," IEEE Trans. Electromagn. Compat., Vol. 54, No. 3, 522-532, 2012.
doi:10.1109/TEMC.2011.2167337

9. Hong, J.-I. and C.-S. Huh, "Optimization of stirrer with various parameters in reverberation chamber," Progress In Electromagnetics Research, Vol. 104, 15-30, 2010.
doi:10.2528/PIER09121610

10. Moglie, F. and P. V. Mariani, "Numerical analysis of a new location for the working volume inside a reverberation chamber," IEEE Trans. Electromagn. Compat., Vol. 54, No. 2, 238-245, 2012.
doi:10.1109/TEMC.2012.2186303

11. IEC 61000-4-21 "Electromagnetic compatibility (EMC) --- Part 4-21: Testing and measurement techniques --- Reverberation chamber test methods,", 2011.

12. Kouveliotis, N. K., P. T. Trakadas, and C. N. Capsalis, "FDTD calculation of quality factor of vibrating intrinsic reverberation chamber," Electronics Letters, Vol. 38, No. 16, 861-862, 2002.
doi:10.1049/el:20020576

13. Moglie, F., "Convergence of the reverberation chambers to the equilibrium analyzed with the finite-difference time-domain algorithm," IEEE Trans. Electromagn. Compat., Vol. 46, No. 3, 469-476, 2004.
doi:10.1109/TEMC.2004.831904