Vol. 35
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-10-17
Compact Bandpass Filter with Mixed Electric and Magnetic (EM) Coupling
By
Progress In Electromagnetics Research Letters, Vol. 35, 107-114, 2012
Abstract
A compact wide-band bandpass filter (BPF) with high frequency selectivity using stepped impedance resonators (SIRs) is presented in this paper. The proposed BPF consists of four SIRs, which share a common grounded via-hole. To improve the frequency selectivity, multiple transmission zeros (TZs) are employed in the stopband by mixed electric/magnetic (EM) coupling. The novel filter with 32.2% fractional bandwidth (FBW) has been designed and fabricated to verify the validity of the proposed method. Measured results are in good agreement with the electromagnetic simulation. The measured results show three finite transmission zeros in the stopband, located at 2.47 GHz, 5.26 GHz, 9.39 GHz, respectively. The circuit size of proposed BPF only occupies 3.10 x 13.30 mm2.
Citation
Bo Fu, Xubo Wei, Xue Zhou, Meijuan Xu, and Jiaxuan Liao, "Compact Bandpass Filter with Mixed Electric and Magnetic (EM) Coupling," Progress In Electromagnetics Research Letters, Vol. 35, 107-114, 2012.
doi:10.2528/PIERL12090314
References

1. Mo, S.-G., Z.-Y. Yu, and L. Zhang, "Design of triple-mode bandpass filter using improved hexagonal loop resonator," Progress In Electromagnetics Research, Vol. 96, 117-125, 2009.
doi:10.2528/PIER09080304

2. Coudos, S. K., Z. D. Zaharis, and T. V. Yioultsis, "Application of a differential evolution algorithm with strategy adaptation to the design of multi-band microwave filters for wireless communications," Progress In Electromagnetics Research, Vol. 109, 123-137, 2010.
doi:10.2528/PIER10081704

3. Wu, L.-S., J.-F. Mao, W. Shen, and W.-Y. Yin, "Extended doublet bandpass filters implemented with microstrip resonator and full-/half-mode substrate integrated cavities," Progress In Electromagnetics Research, Vol. 108, 433-447, 2010.
doi:10.2528/PIER10081206

4. Chiou, Y.-C., P.-S. Yang, J.-T. Kuo, and C.-Y.Wu, "Transmission zero design graph for dual-mode dual-band filter with periodic stepped-impedance ring resonator," Progress In Electromagnetics Research, Vol. 108, 23-36, 2010.
doi:10.2528/PIER10071608

5. Hong, J.-S., E. P. McErlean, and B. M. Karyamapudi, "A high-temperature superconducting filter for future mobile telecommunication systems," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 6, 1976-1981, 2005.
doi:10.1109/TMTT.2005.848840

6. Lu, J.-C., C.-K. Liao, and C.-Y. Chang, "Microstrip parallel-coupled filters with cascade trisection and quadruplet responses," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 9, 2101-2110, 2008.
doi:10.1109/TMTT.2008.2002226

7. Cai, L. Y., G. Zeng, H. C. Yang, and Y. Z. Cai, "Compact bandpass filter for RFID reader applications," Electronics Lett., Vol. 47, No. 7, 321-322, 2011.
doi:10.1049/el.2011.0275

8. Liao, C. K. and C. Y. Chang, "Modified parallel-coupled filter with two independently controllable upper stopband transmission zeros," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 12, 841-843, 2005.
doi:10.1109/LMWC.2005.860017

9. Amari, S. and J. Bornemann, "Maximum number of finite transmission zeros of coupling resonator filters with source/load multi-resonator coupling and a given topology," Microwave Conference, 1175-1177, 2000.

10. Kuo, J.-T., S.-C. Tang, and S.-H. Lin, "Quasi-elliptic function bandpass filter with upper stopband extension and high rejection level using cross-coupled stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 114, 395-405, 2011.

11. Wei, C.-L., B.-F. Jia, Z.-J. Zhu, and M.-C. Tang, "Hexagonal dual-mode filter with four transmission zeros," Electronics Lett., Vol. 47, No. 3, 195-196, 2011.
doi:10.1049/el.2010.3291

12. Dai, G. and M. Xia, "Novel miniaturized bandpass filters using spiral-shaped resonators and window feed structures," Progress In Electromagnetics Research, Vol. 100, 235-243, 2010.
doi:10.2528/PIER09120401

13. Wu, Y.-L., C. Liao, and X.-Z. Xiong, "A dual-wideband bandpass filter based on E-shaped microstrip SIR with improved upper-stopband performance," Progress In Electromagnetics Research, Vol. 108, 141-153, 2010.
doi:10.2528/PIER10071802

14. Montejo-Garai, , J. R., "Synthesis of N-even order symmetric filters with N transmission zeros by means of source-load cross coupling," Electronics Lett., Vol. 36, No. 3, 232-233, 2000.
doi:10.1049/el:20000242

15. Athukorala, L. and D. Budimir, "Compact filter configurations using concentric microstrip open-loop resonators," IEEE Microw. Wirelss Compon. Lett., Vol. 22, No. 5, 245-247, 2012.
doi:10.1109/LMWC.2012.2190268

16. Shaman, H. and J.-S. Hong, "A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeroes," IEEE Microw. Wirelss Compon. Lett., Vol. 17, No. 2, 121-123, 2007.
doi:10.1109/LMWC.2006.890335

17. Yang, R.-Y., K. Hon, C.-Y. Hung, and C.-S. Ye, "Design of dualband bandpass filters using a dual feeding structure and embedded uniform impedance resonators," Progress In Electromagnetics Research, Vol. 105, 93-102, 2010.
doi:10.2528/PIER10042504

18. Ma, K.-X., J.-G. Ma, K.-S. Yeo, and M.-A. Do, "A compact size coupling controllable filter with separate electric and magnetic coupling paths," IEEE Trans. on Microw. Theory and Tech., Vol. 54, No. 3, 1113-1119, 2006.
doi:10.1109/TMTT.2005.864118

19. Chu, Q.-X. and H. Wang, "A compact open-loop filter with mixed electric and magnetic coupling," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 2, 431-439, 2008.
doi:10.1109/TMTT.2007.914642

20. Velazquez-Ahumada, M. D. C., J. Martel-Villagr, F. Medina, and F. Mesa, "Design of a band-pass filter using stepped impedance resonators with floating conductors," Progress In Electromagnetics Research, Vol. 105, 31-48, 2010.
doi:10.2528/PIER10042010

21. Ouyang, X. and Q.-X. Chu, "A mixed cross-coupling microstrip filter with multiple transmission zeros," Journal of Electromagnetic Waves and Applications,, Vol. 25, No. 11-12, 1515-1524, 2011.
doi:10.1163/156939311797164936

22. Cameron, R.-J., A.-R. Harish, and C.-J. Radcliffe, "Synthesis of advanced microwave filters without diagonal cross-couplings," IEEE Trans. on Microw. Theory and Tech., Vol. 12, 2862-2872, 2002.
doi:10.1109/TMTT.2002.805141

23. Wei, X. B., Y. Shi, P. Wang, J. X. Liao, Z. Q. Xu, and B. C. Yang, "Design of compact, wide stopband bandpass filter using stepped impedance resonator," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8-9, 1095-1104, 2012.
doi:10.1080/09205071.2012.710534