Vol. 133
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-11-01
Investigation on the Scattering from One-Dimensional Nonlinear Fractal Sea Surface by Second-Order Small-Slope Approximation
By
Progress In Electromagnetics Research, Vol. 133, 425-441, 2013
Abstract
In this paper, a one-dimensional nonlinear fractal sea surface model has been established based on the narrow-band Lagrange model, which takes into account the vertical and horizontal skewnesses for the sea surface. By using the method of second-order small-slope approximation (SSA-II), the normalized radar cross section (NRCS) and Doppler spectrum of linear and nonlinear fractal sea surface are calculated. The calculated NRCS of the nonlinear fractal sea surface is larger than the linear surface for backscattering, especially for large incidence angles, which indicates the nonlinear surface has stronger scattering echoes. And the result of nonlinear fractal sea surface is also larger than the linear fractal sea surface for bistatic case, which is characterized as the discrepancies being small near specular direction, while the discrepancies becoming larger as the scattering angles departing from the specular direction. For the Doppler spectrum of sea surface, the nonlinearity of sea surface effects greatly enhances the Doppler shift and the Doppler spectrum bandwidth at large incidence angles, which are attributed the fact that the nonlinear-wave components propagate faster than the linear-wave components and the nonlinear fractal sea surface corrects the phase velocities by adding the horizontal and vertical skewness. And also, all the results can indicate the validity of this nonlinear model.
Citation
Gen Luo, and Min Zhang, "Investigation on the Scattering from One-Dimensional Nonlinear Fractal Sea Surface by Second-Order Small-Slope Approximation," Progress In Electromagnetics Research, Vol. 133, 425-441, 2013.
doi:10.2528/PIER12082706
References

1. Baussard, A., M. Rochdi, and A. Khenchaf, "PO/Mec-based scattering model for complex objects on a sea surface," Progress In Electromagnetics Research, Vol. 111, 229-251, 2011.
doi:10.2528/PIER10083005

2. Kurrant, D. J. and E. C. Fear, "Extraction of internal spatial features of inhomogeneous dielectric objects using near-field reflection data," Progress In Electromagnetics Research, Vol. 122, 197-221, 2012.
doi:10.2528/PIER11092105

3. Ji, W.-J. and C.-M. Tong, "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the G-SMCG method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
doi:10.2528/PIER10041101

4. Chen, H., M. Zhang, and H.-C. Yin, "Facet-based treatment on microwave bistatic scattering of three-dimensional sea surface with electrically large ship," Progress In Electromagnetics Research, Vol. 123, 385-405, 2012.
doi:10.2528/PIER11101108

5. Yang, W., Z. Zhao, C. Qi, W. Liu, and Z.-P. Nie, "Iterative hybrid method for electromagnetic scattering from a 3-D object above a 2-D random dielectric rough surface," Progress In Electromagnetics Research, Vol. 117, 435-448, 2011.

6. Luo, W., M. Zhang, Y. W. Zhao, and H. Chen, "An efficient hybrid high-frequency solution for the composite scattering of the ship very large two-dimensional sea surface," Progress In Electromagnetics Research M, Vol. 8, 79-89, 2009.
doi:10.2528/PIERM09050103

7. Zhang, M., W. Luo, G. Luo, C. Wang, and H.-C. Yin, "Composite Scattering of ship on sea surface with breaking waves," Progress In Electromagnetics Research, Vol. 123, 263-277, 2012.
doi:10.2528/PIER11100811

8. Wu, Z.-S., J.-J. Zhang, and L. Zhao, "Composite electromagnetic scattering from the plate target above a one-dimensional sea surface: Taking the diffraction into account," Progress In Electromagnetics Research, Vol. 92, 317-331, 2009.
doi:10.2528/PIER09032902

9. Chang, Y.-L., C.-Y. Chiang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507

10. Chen, H., M. Zhang, D. Nie, and H.-C. Yin, "Robust semi-deterministic facet model for fast estimation on EM scattering from ocean-like surface," Progress In Electromagnetics Research B, Vol. 18, 347-363, 2009.
doi:10.2528/PIERB09100508

11. Nie, D. and M. Zhang, "Bistatic scattering analysis for two-dimensional rough sea surfaces using an angular composite model," Int. J. Remote Sens., Vol. 32, No. 24, 9661-9672, 2001.
doi:10.1080/01431161.2011.574160

12. Huang, C.-W. and K. C.-Lee, "Application of ICA technique to PCA based radar target recognition," Progress In Electromagnetics Research, Vol. 105, 157-170, 2010.
doi:10.2528/PIER10042305

13. Zhang, M., Y. W. Zhao, H. Chen, and W.-Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.
doi:10.2528/PIER11071501

14. Liang, D., P. Xu, L. Tsang, Z. Gui, and K.-S. Chen, "Electromagnetic scattering by rough surfaces with large heights and slopes with applications to microwave remote sensing of rough surface over layered media," Progress In Electromagnetics Research, Vol. 95, 199-218, 2009.
doi:10.2528/PIER09071413

15. Guo, L.-X., Y. Liang, J. Li, Z.-S, and Wu, "A high order integral SPM for the conducting rough surface scattering with the tapered wave incidence-TE case," Progress In Electromagnetics Research, Vol. 114, 333-352, 2011.

16. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, San Francisco, 1982.

17. Jakeman, E., "Fresnel scattering by a corrugated random surface with fractal slope," J. Opt. Soc. Am., Vol. 72, No. 8, 1034-1041, 1982.
doi:10.1364/JOSA.72.001034

18. Berizzi, F., E. D. Mese, and G. Pinelli, "One-dimensional fractal model of the sea surface," IEE Proc. Radar, Sonar Navig., Vol. 146, No. 1, 55-64, 1999.
doi:10.1049/ip-rsn:19990259

19. Guo, L.-X. and Z.-S. Wu, "Fractal model and electromagnetic scattering from time-varying sea surface," Electr. Lett., Vol. 36, No. 21, 1801-1812, 2000.
doi:10.1049/el:20001262

20. Berizzi, F., M. Greco, and L. Verrazzani, "Fractal approach for sea clutter generation," IEE Proc. Radar, Sonar Navig., Vol. 147, No. 4, 189-198, 2000.
doi:10.1049/ip-rsn:20000465

21. Liu, W., L.-X. Guo, and Z.-S. Wu, "Polarimetric scattering from a two-dimensional improved sea fractal surface," Chin. Phys. B, Vol. 19, No. 7, 074012-1, 2010.

22. Berizzi, F. and E. D. Mese, "Scattering coefficient evaluation from a two-dimensional sea fractal surface," IEEE Trans. on Antennas and Propagat., Vol. 50, No. 4, 426-434, 2002.
doi:10.1109/TAP.2002.1003377

23. Chen, J., et al. "The use of fractals for modeling EM waves scattering from rough sea surface," IEEE Trans. on Geosci. Remote Sens., Vol. 34, No. 4, 966-972, 1996.
doi:10.1109/36.508413

24. Xie, T., et al. "Numerical study of electromagnetic scattering from one-dimensional nonlinear fractal sea surface," Chin. Phys. B, Vol. 19, No. 2, 024101-1, 2010.

25. Guo, L. and C. Kim, "Study on the two-frequency scattering cross section and pulse broadening of the one-dimensional fractal sea surface at millimeter wave frequency ," Progress In Electromagnetics Research, Vol. 37, 221-234, 2002.
doi:10.2528/PIER02042601

26. Xie, T., et al. "A two scale nonlinear fractal sea surface model in a one dimensional deep sea," Chin. Phys. B, Vol. 19, No. 5, 059201-1, 2010.

27. Li, X.-F. and X.-J. Xu, "Scattering and Doppler spectral analysis for two-dimensional linear and nonlinear sea surfaces," IEEE Trans. on Geosci. Remote Sens., Vol. 49, No. 2, 603-611, 2011.
doi:10.1109/TGRS.2010.2060204

28. Nouguier, F., C. A. Guérin, and G. Soriano, "Analytical techniques for the Doppler signature of sea surfaces in the microwave regime. II: Nonlinear surfaces," IEEE Trans. on Geosci. Remote Sens., Vol. 49, No. 12, 4920-4927, 2011.
doi:10.1109/TGRS.2011.2153207

29. Johnson, J. T., J. V. Toporkov, and G. S. Brown, "A numerical study of backscattering from time-evolving sea surfaces: Comparison of hydrodynamic models," IEEE Trans. on Geosci. Remote Sens., Vol. 39, No. 11, 2411-2420, 2001.
doi:10.1109/36.964977

30. Lindgren, G. and S. Aberg, "First order stochastic Lagrange model for asymmetric ocean waves," J. Offshore Mech. Arct. Eng., Vol. 131, No. 3, 031602, 2009.
doi:10.1115/1.3124134

31. Lindgren, G., "Exact asymmetric slope distributions in stochastic gauss Lagrange ocean waves," Appl. Ocean Res., Vol. 31, No. 1, 65-73, 2009.
doi:10.1016/j.apor.2009.06.002

32. Wang, Y.-H., Y.-M. Zhang, M.-X. He, and C.-F. Zhao, "Doppler spectra of microwave scattering fields from nonlinear oceanic surface at moderate- and low-grazing angles," IEEE Trans. on Geosci. Remote Sens., Vol. 50, No. 4, 1104-1116, 2012.
doi:10.1109/TGRS.2011.2164926

33. Voronovich, A. G., "Small-slope approximation in wave scattering by rough surface," Sov. Phys. JETP, Vol. 62, 65-70, 1985.

34. Voronovich, A. G., "Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces," Wave Random Media, Vol. 4, 337-367, 1994.
doi:10.1088/0959-7174/4/3/008

35. Voronovich, A. G. and V. U. Zavorotny, "Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves," Waves Random Media, Vol. 11, No. 3, 247-269, 2001.

36. Berizzi, F. and E. D. Mese, "Fractal analysis of the signal scattered from the sea surface," IEEE Trans. on Geosci. Remote Sens., Vol. 47, No. 2, 324-338, 1999.

37. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves, John Wiley & Sons Inc., New York, 2001.

38. Toporkov, J. V. and G. S. Brown, "Numerical simulation of scattering from time-varying, randomly rough surfaces," IEEE Trans. on Geosci. Remote Sens., Vol. 38, No. 4, 1616-1625, 2000.
doi:10.1109/36.851961

39. Toporkov, J. V., M. A. Sletten, and G. S. Brown, "Numerical scattering simulations from time-evolving ocean-like surfaces at L- and X-band: Doppler analysis and comparisons with a composite surface analytical model," Proc. Gen. Assem. Int. URSI.

40. Nie, D., M. Zhang, X. Geng, and P. Zhou, "Investigation on Doppler spectral characteristics of electromagnetic backscattered echoes from dynamic nonlinear surfaces of finite-depth sea," Progress In Electromagnetics Research, Vol. 130, 169-186, 2012.