Vol. 28
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-01-28
Aperture Beam Expansion by Using a Spectral 2D-Gpof Method
By
Progress In Electromagnetics Research M, Vol. 28, 245-257, 2013
Abstract
A method is presented for computing aperture-radiated fields in terms of complex-source type beams. These beams are generated in a natural way by expanding the aperture field spectrum in a sum of complex exponentials. The latter are obtained by using the 2D-GPOF method. Inverse transformation in spatial domain leads to an analytical form in terms of complex source points. Fields radiated by apertures obtained via this approach are validated by direct near field integration and compared with those calculated with spectral-based beam expansion which starts from the Hankel spectrum and uses a 1D-GPOF approach.
Citation
Massimiliano Casaletti, and Stefano Maci, "Aperture Beam Expansion by Using a Spectral 2D-Gpof Method," Progress In Electromagnetics Research M, Vol. 28, 245-257, 2013.
doi:10.2528/PIERM12082007
References

1. Felsen, L. B., "Complex-source-point solutions of the field equations and their relation to the propagation and scattering of gaussian beams," Proc. Symp. Math., Vol. 18, 39-56, 1975.

2. Mengtao , Y., Y. Zhang, D. Arijit, J. Zhong, and T. K. Sarkar, "Two-dimensional discrete complex image method (DCIM) for closed-form Green's function of arbitrary 3D structures in general multilayered media," IEEE Trans. on Antennas and Propagat., Vol. 56, No. 5, 1350-1357, 2008.
doi:10.1109/TAP.2008.922176

3. Sommerfeld, A., Partial Differential Equations, Academic Press, New York, 1964.

4. Hansen, T. B. and G. Kaiser, "Huygens' principle for complex spheres," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 59, 3835-3847, 2011.
doi:10.1109/TAP.2011.2163764

5. Tap, K., P. H. Pathak, and R. J. Burkholder, "Exact complex source point beam expansions for electromagnetic fields," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 9, 3379-3390, 2011.
doi:10.1109/TAP.2011.2161438

6. Deschamps, L. B., "The Gaussian beam as a bundle of complex rays," Electronics Letters, Vol. 7, No. 23, 684-685, 1971.
doi:10.1049/el:19710467

7. Chou, H. T., P. H. Pathak, and R. J. Burkholder, "Application of gaussian-ray basis functions for the rapid analysis of electromagnetic radiation from reflector antennas," IEE Proc. Microw. Antennas Propagat., Vol. 150, No. 3, 177-183, 2003.
doi:10.1049/ip-map:20030506

8. Withington, S., J. A. Murphy, and K. G. Isaak, "Representation of mirrors in beam waveguides as inclined phase-transforming surfaces," Infrared Phys. Technol., Vol. 36, No. 3, 723-734, 1995.
doi:10.1016/1350-4495(94)00047-O

9. Heyman, E. and I. Beracha, "Complex multipole pulsed beams and Hermite pulsed beams: A novel expansion scheme for transient radiation from well-collimated apertures," J. Opt. Soc. Am. A, Vol. 9, No. 10, 1779-1793, 1992.
doi:10.1364/JOSAA.9.001779

10. Caravaca Aguirre, A. M. and T. Alieva, "Orbital angular moment Orbital angular moment density of beam given as a superposition of Hermite-Laguerre-Gauss functions," PIERS Online, Vol. 7, No. 5, 476-480, 2011.

11. Martini, E., G. Carli, and S. Maci, "A domain decomposition method based on a generalized scattering matrix formalism and a complex source expansion," Progress In Electromagnetics Research B, Vol. 19, 445-473, 2010.
doi:10.2528/PIERB10012110

12. Tap, , K., P. H. Pathak, and R. J. Burkholder, "Exact complex source point beam expansion of electromagnetic fields from arbitrary closed surfaces," 2007 IEEE Antennas and Propagation Society International Symposium, 4028-4031, June 9-15, 2007.

13. Steinberg, B. Z., E. Heyman, and L. B. Felsen, "Phase space methods for radiation from large apertures," Radio Sci., Vol. 26, No. 1, 219-227, 1991.
doi:10.1029/90RS01501

14. Shlivinski, A., E. Heyman, A. Boag, and C. Letrou, "A phase-space beam summation formulation for ultrawide-band radiation: A multiband scheme," IEEE Trans. on Antennas and Propagat., Vol. 52, No. 8, 2042-2056, 2005.
doi:10.1109/TAP.2004.832513

15. Chabory, A., J. Sokoloff, and S. Bolioli, "Novel Gabor-based Gaussian beam expansion for curved aperture radiation in dimension two," Progress In Electromagnetics Research, Vol. 58, 171-185, 2006.
doi:10.2528/PIER05090702

16. Skokic, S., M. Casaletti, S. Maci, and B. Srensen, "Complex conical beams for aperture field representations," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 2, 611-622, 2011.
doi:10.1109/TAP.2010.2096379

17. Hua, Y. and T. K. Arkar, "Generalized pencil-of-function method for extracting poles of an EM system from its transient response," IEEE Trans. on Antennas and Propagat., Vol. 37, No. 2, 229-234, 1989.
doi:10.1109/8.18710

18. Fructos, A. L., R. R. Boix, and F. Mesa, "Efficient computation E±cient computation periodic dyadic Green's function," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 7, 2557-2564, 2011.
doi:10.1109/TAP.2011.2152344

19. Akyuz, M. S., V. B. Erturk, and M. Kalfa, "Closed-form Green's function representations for mutual coupling calculations between apertures on a perfect electric conductor circular cylinder covered with dielectric layers," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 8, 3094-3098, 2011.
doi:10.1109/TAP.2011.2158787

20. Bucci, O. M. and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Trans. on Antennas and Propagat., Vol. 37, No. 7, 918-926, 1989.
doi:10.1109/8.29386

21. Felsen, L. B. and N. Marcuwitz, "Radiation and Scattering of Waves," Wiley-IEEE Press, , 1994.

22. Balanis, C. A., Advanced Electromagnetic Engineering, John Sons, 2005.

24. Casaletti, M., S. Maci, and G. Vecchi, "A complete set of linear-phase basis functions for scatterers with flat faces and for planar apertures," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 2, 563-573, 2011.
doi:10.1109/TAP.2010.2096178