Vol. 26
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-09-27
Ground Plane Contribution in Wireless Handheld Devices Using Radar Cross Section Analysis
By
Progress In Electromagnetics Research M, Vol. 26, 101-114, 2012
Abstract
The ground plane of wireless handheld devices plays a significant role in the electromagnetic behavior determining bandwidth, efficiency, and radiation patterns. Therefore, it is necessary to determine the frequency region where the ground plane can be better excited, especially for low frequencies where the performance of the radiating system is critical due to size limitations with respect to the operating wavelength. A fast method based on the radar cross section (RCS) is presented for computing the frequency at which the ground plane can be excited. The proposal is applied to three typical wireless platforms: a handset phone, a smartphone, and a clamshell phone. The method is compared with characteristic mode analysis and the results demonstrate a very good agreement in the resonant frequency prediction. Complex platforms using metallic strips and slots in the ground plane are analyzed using RCS which gives physical insight into the electromagnetic performance.
Citation
Jaume Anguera, and Aurora Andujar, "Ground Plane Contribution in Wireless Handheld Devices Using Radar Cross Section Analysis," Progress In Electromagnetics Research M, Vol. 26, 101-114, 2012.
doi:10.2528/PIERM12081704
References

1. Wu, T. Y. and K. L. Wong, "On the impedance bandwidth of a planar inverted-F antenna for mobile handsets," Microwave Opt. Tech. Lett.,, Vol. 32, 249-251, Feb. 20, 2002.
doi:10.1002/mop.10145

2. Vainikainen, P., J. Ollikainen, O. KivekÄas, I. Kelander, and , "Resonator-based analysis of the combination of mobile handset antenna and chassis," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 10, 1433-1444, Oct. 2002.
doi:10.1109/TAP.2002.802085

3. Abedin, M. F. and M. Ali, "Modifying the ground plane and its e®ect on planar inverted-F antennas (PIFAs) for mobile phone handsets," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 2003.

4. Hossa, R., A. Byndas, and M. E. Bialkowski, "Improvement of compact terminal antenna performance by incorporating open-end slots in ground plane," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 6, Jun. 2004.
doi:10.1109/LMWC.2004.828007

5. Anguera, J., I. Sanz, A. Sanz, A. Condes, D. Gala, C. Puente, J. Soler, and , "Enhancing the performance of handset antennas by means of groundplane design," IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials (iWAT), 29-32, New York, USA, Mar. 2006.

6. Anguera, J., A. Cabedo, C. Picher, I. Sanz, M. Ribo, C. Puente, "Multiband handset antennas by means of groundplane modification," IEEE Antennas and Propagation Society International Symposium, 1253-1256, Honolulu, Hawaii,USA, Jun. 2007.

7. Cabedo, M., E. Antonino, A. Valero, and M. Ferrando, "The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications," IEEE Antennas and Propagation Magazine, Vol. 49, No. 5, 52-68, Oct. 2007.
doi:10.1109/MAP.2007.4395295

8. Cabedo, A., J. Anguera, C. Picher, M. Ribo, and C. Puente, "Multi-band handset antenna combining a PIFA, slots, and ground plane modes," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2526-2533, Sep. 2009.
doi:10.1109/TAP.2009.2027039

9. Picher, C., J. Anguera, A. Cabedo, C. Puente, and S. Kahng, "Multiband handset antenna using slots on the ground plane: Considerations to facilitate the integration of the feeding transmission line," Progress In Electromagnetics Research C, Vol. 7, 95-109, 2009.
doi:10.2528/PIERC09030605

10. Razali, A. R. and M. E. Bialkowski, "Coplanar inverted-F with open-end ground slots for multiband operation," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1029-1032, 2009.
doi:10.1109/LAWP.2009.2031330

11. Anguera, J., I. Sanz, J. Mumbru, C. Puente, "Multi-band handset antenna with a parallel excitation of PIFA and slot radiators," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 348-356, Feb. 2010.
doi:10.1109/TAP.2009.2038183

12. Picher, C., J. Anguera, A. Andujar, C. Puente, and S. Kahng, "Analysis of the human head interaction in handset antennas with slotted ground planes," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 36-56, Apr. 2012.
doi:10.1109/MAP.2012.6230717

13. Anguera, J. and A. Condes, "Portable wireless device with fractal enhanced strip plane,", Patent Appl. WO 2007/039071, 2007.

14. Chang, C. H. and K. L. Wong, "Bandwidth enhancement of internal WWAN antenna using an inductively coupled plate in the small-size mobile phone," Microwave Opt. Tech. Lett., Vol. 52, 1247-1253, 2010.
doi:10.1002/mop.25196

15. Anguera, J., A. Andujar, and C. Puente, "A mechanism to electrically enlarge the ground plane of handset antennas: A bandwidth enhancement technique," Microwave Opt. Tech. Lett., Vol. 53, No. 7, 1512-1517, Jul. 2011.
doi:10.1002/mop.26027

16. Lindberg, P. and E. Ojefors, "A bandwidth enhancement technique for mobile handset antennas using wavetraps," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 8, Aug. 2006.
doi:10.1109/TAP.2006.879211

17. Maoz, J. and M. Kadichevitz, "Apparatus and method for enhancing low-frequency operation of mobile communication antennas,", US Patent 6, 940, 460, 2005.

18. Harrington, R. F. and J. R. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, Sep. 1971.
doi:10.1109/TAP.1971.1139999

19. Makarov, S. N., Antenna and EM Modeling with Matlab, Wiley-Interscience, John Wiley & Sons, Jul. 2002.

20. Jo, J.-H., B. Yu, K.-H. Kong, K. Jung, I.-Y. Lee, M.-J. Park, B. Lee, "Multi-band internal antenna including DVB-H band," IEEE Antennas and Propagation Society International Symposium, 972-975.

21. Anguera, J., A. Andujar, C. Puente, and J. Mumbru, "Antennaless wireless device,", Patent Appl. WO2010/015365,Jul. 31, 2009.

22. Anguera, J., A. Andujar, C. Puente, and J. Mumbru, "Antennaless wireless device capable of operation in multiple frequency regions,", Patent Appl. WO2010/015364, Jul. 31, 2009.

23. Andujar, A., J. Anguera, and C. Puente, "Ground plane boosters as a compact antenna technology for wireless handheld devices," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1668-1677, May 2011.
doi:10.1109/TAP.2011.2122299

24. Jung, J. M., S. J. Kim, K. H. Kong, J. S. Lee, and B. Lee, "Designing ground plane to reduce hand effects on mobile handsets," IEEE Antennas and Propagation Society International Symposium, Honolulu, Hawaii, USA, Jun. 2007.

25. Holopainen, J., J. Ilvonen, O. Kivekas, R. Valkonen, C. Icheln, and P. Vainikainen, "Near-field control of handset antennas based on inverted-top wavetraps: Focus on hearing-aid compatibility," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 592-595, 2009.
doi:10.1109/LAWP.2009.2022352