Vol. 132
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-09-27
Evolution Towards a New Lspr Particle: Nano-Sinusoid
By
Progress In Electromagnetics Research, Vol. 132, 199-213, 2012
Abstract
This paper proposes a novel nano-sinusoid particle to be employed in enhanced localized surface plasmon resonance (LSPR) bio-sensing devices. Numerical investigations are carried out to demonstrate advantages offered by the proposed nano-particle on LSPR enhancement over other nano-particles including noble nano-triangles and nano-diamonds. Although nano-triangles exhibit high concentration of the electric field near their tips, when illuminated with a light polarized along the tip axis, they present only one hot spot at the vertex along the polarization direction. To create a structure with two hot spots, which is desired in bio-sensing applications, two nano-triangles can be put back-to-back. Therefore, a nano-diamond particle is obtained which exhibits two hot spots and presents higher enhancements than nano-triangles for the same resonant wavelength. The main drawback of the nano-diamonds is the fluctuation in their physical size-plasmon spectrum relationships, due to a high level of singularity as the result for their four sharp tip points. The proposed nano-sinusoid overcomes this disadvantage while maintaining the benefits of having two hot spots and high enhancements.
Citation
Daryoush Mortazavi, Abbas Z. Kouzani, and Ladislau Matekovits, "Evolution Towards a New Lspr Particle: Nano-Sinusoid," Progress In Electromagnetics Research, Vol. 132, 199-213, 2012.
doi:10.2528/PIER12081101
References

1. Li, S., S. Yin, Y. Jiang, C. Yin, Q. Deng, and C. Du, "Specific protein detection in multiprotein coexisting environment by using LSPR biosensor," IEEE Transactions on Nanotechnology, Vol. 9, 554-557, 2010.
doi:10.1109/TNANO.2010.2050698

2. Sadeghi, S. M., "Plasmonic metaresonance nanosensors: Ultrasensitive tunable optical sensors based on nanoparticle molecules," IEEE Transactions on Nanotechnology, Vol. 10, 566-571, 2011.
doi:10.1109/TNANO.2010.2052467

3. Mortazavi, D., A. Z. Kouzani, and A. Kaynak, "Nano-plasmonic biosensors: A review," ICMEA'11, Harbin, China, 2011.

4. Willets, K. A. and R. P. van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," The Annual Review of Physical Chemistry, Vol. 58, 267-297, 2007.
doi:10.1146/annurev.physchem.58.032806.104607

5. Haes, A. J. and R. P. van Duyne, "A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles ," American Chemical Society, Vol. 124, 10596-10604, 2002.
doi:10.1021/ja020393x

6. Mayergoyz, I. D., D. R. Fredkin, and Z. Zhang, "Electrostatic (plasmon) resonances in nanoparticles," Physical Review B, Vol. 72, 155412-155426, 2005.
doi:10.1103/PhysRevB.72.155412

7. Politano, A., et al. "Electronic properties of self-assembled quantum dots of sodium on Cu(111) and their interaction with water," Surface Science, Vol. 601, 2656-2659, 2007.
doi:10.1016/j.susc.2006.11.079

8. Politano, A., R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, "High resolution electron energy loss measurements of Na/Cu(111) and H2O/Na/Cu(111): Dependence of water reactivity as a function of Na coverage," J. of Chemical Physics, Vol. 126, 244712, 2007.
doi:10.1063/1.2748385

9. Slaughter, L., W. S. Chang, and S. Link, "Characterizing plasmons in nanoparticles and their assemblies with single particle spectroscopy," J. Phys. Chem. Lett., Vol. 2, 2015-2023, 2011.
doi:10.1021/jz200702m

10. Angulo, A. M., C. Noguez, and G. C. Schatz, "Electromagnetic field enhancement for wedge-shaped metal nanostructures," J. Phys. Chem. Lett., Vol. 2, 1978-1983, 2011.
doi:10.1021/jz200825g

11. Hao, F., C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Letters, Vol. 7, 729-732, 2007.
doi:10.1021/nl062969c

12. Richards, D., R. G. Milner, F. Huang, and F. Festy, "Tip-enhanced Raman microscopy: Practicalities and limitations," J. of Raman Spectroscopy, Vol. 34, 663-667, 2003.
doi:10.1002/jrs.1046

13. Ishimaru, A., S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metamaterials and negative index materials," Progress In Electromagnetic Research, Vol. 51, 139-152, 2005.
doi:10.2528/PIER04020603

14. Liu, X., J. Lin, T. F. Jiang, Z. F. Zhu, Q. Q. Zhan, J. Qian, and S. He, "Surface plasmon properties of hollow AuAg alloyed triangular nanoboxes and its applications in SERS imaging and potential drug delivery ," Progress In Electromagnetic Research, Vol. 128, 35-53, 2012.
doi:10.2528/PIER11112406

15. Zeman, E. J. and G. C. Schatz, "An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium," J. of Chemical Physics, Vol. 91, 634-643, 1987.
doi:10.1021/j100287a028

16. Schatz, G. C. and R. P. van Duyne, Electromagnetic Mechanism of Surface-enhanced Spectroscopy, John Wiley & Sons Ltd., Chichester, 2002.

17. Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Shatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment ," J. Physical Chemistry B, Vol. 107, 668-677, 2003.
doi:10.1021/jp026731y

18. Davis, T. J., K. C. Vernon, and D. E. Gómez, "Designing plasmonic systems using optical coupling between nanoparticles," Physical Review B, Vol. 79, 155423-155432, 2009.
doi:10.1103/PhysRevB.79.155423

19. Davis, T. J., D. E. Gomez, and K. C. Vernon, "Simple model for the hybridization of surface Plasmon resonances in metallic nanoparticles," Nano Letters, Vol. 10, 2618-2625, 2010.
doi:10.1021/nl101335z

20. Mortazavi, D., A. Z. Kouzani, A. Kaynak, and W. Duan, "Developing LSPR design guidelines," Progress In Electromagnetic Research, Vol. 126, 203-235, 2012.
doi:10.2528/PIER12011810

21. Mortazavi, D., A. Z. Kouzani, and K. C. Vernon, "A resonance tunable and durable LSPR nano-particle sensor: Al2O3 capped silver nano-disks," Progress In Electromagnetic Research, Vol. 130, 429-446, 2012.

22. Mortazavi, D., A. Z. Kouzani, and A. Kaynak, "Investigating nanoparticle-substrate interaction in LSPR biosensing using the image-charge theory," EMBC'12, San Diego, USA, Aug. 2012.

23. Collin, R. E., Foundations for Microwave Engineering, Chapter 5, McGraw-Hill, New York, 1966.

24. Mortazavi, D., A. Z. Kouzani, and L. Matekovits, "Investigation on localized surface plasmon resonance of different nano-particles for bio-sensor applications," ICEAA'12, Cape Town, South Africa, 2012.

25. Kreibig, U. and M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin, Germany, 1995.

26. Zhou, X., M. Zhang, L. Yi, and Y. Fu, "Investigation of resonance modulation of a single rhombic plasmonic nanoparticle," Plasmonics, Vol. 6, 91-98, 2011.
doi:10.1007/s11468-010-9173-4

27. Luo, Y., J. B. Pendry, and A. Aubry, "Surface plasmons and singularities," Nano Letters, Vol. 10, 4186-4191, 2010.
doi:10.1021/nl102498s

28. Taflove, A., "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, Boston, London, 1995.

29. Gao, C., Z. Lu, Y. Liu, Q. Zhang, M. Chi, Q. Cheng, and Y. Yin, "Highly stable silver nanoplates for surface plasmon resonance biosensing ," Angewandte Chemie, Vol. 51, 5629-5633, 2012.
doi:10.1002/anie.201108971

30. Link, S. and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Physical Chemistry B, Vol. 103, 8410-8426, 1999.
doi:10.1021/jp9917648