Vol. 26
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-10-11
A Trans-Impedance Green's Function for the Dielectric Ring Circulator
By
Progress In Electromagnetics Research M, Vol. 26, 143-155, 2012
Abstract
An efficient trans-impedance Green's function that describes the electromagnetic behavior of a ring circulator is presented. A rigorous derivation composed of an infinite summation of modified Bessel functions of the first and second kinds is included. As with more traditional circulator descriptions, the formulation herein contains a weak singularity when the measurement point is located near the impressed source point on the same radius. To accelerate convergence of the series, this singularity is extracted from the formulation and integrated analytically. To complete the formulation, two circulators are presented; the first with ports that emanate at equal angles from the outer radius, and the second with two ports associated with the outer radius and one port that connects to the inner radius. The computation time associated with the proposed analysis lasted approximately 0.25 s, whereas an identical structure simulated via a common full-wave solver lasted approximately 10 hours. Comparison of impedance data between the proposed analysis and full-wave simulation is presented.
Citation
Ryan S. Adams, and Aaron K. Hatley, "A Trans-Impedance Green's Function for the Dielectric Ring Circulator," Progress In Electromagnetics Research M, Vol. 26, 143-155, 2012.
doi:10.2528/PIERM12081005
References

1. Shaug-Pettersen, T., "Norwegian electronic research," ONR Tech. Rep. (BR), No. ONRL 111, 57, 1957.

2. Bosma, H., "On stripline y-circulation at UHF," IEEE Trans. Microwave Theory Tech., Vol. 12, No. 1, 61-72, Jan. 1964.
doi:10.1109/TMTT.1964.1125753

3. Fay, , C. E. and R. L. Comstock, "Operation of the ferrite junction circulator," IEEE Trans. Microwave Theory Tech., Vol. 13, No. 1, 15-27, Jan. 1965.
doi:10.1109/TMTT.1965.1125923

4. Wu, Y. S. and F. J. Rosenbaum, "Wide-band operation of microstrip circulators," IEEE Trans. Microwave Theory Tech., Vol. 22, No. 10, 849-856, Oct. 1974.
doi:10.1109/TMTT.1974.1128363

5. Young, J. L. and C. M. Johnson, "A compact recursive trans-impedance Green's function for the inhomogeneous ferrite microwave circulator," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 7, 1751-1759, Jul. 2004.
doi:10.1109/TMTT.2004.830491

6. Auld, B. A., "The synthesis of symmetrical waveguide circulator," IRE Trans. Microwave Theory Tech., Vol. 7, 238-246, Apr. 1959.
doi:10.1109/TMTT.1959.1124688

7. Davis, L. E. and D. B. Sillars, "Millimetric nonreciprocal coupled-slot finline components," IEEE Trans. Microwave Theory Tech., Vol. 34, No. 7, 804-808, 1986.
doi:10.1109/TMTT.1986.1133444

8. Teoh, C. S. and L. E. Davis, "Normal-mode analysis of ferrite-coupled lines using microstrips or slotlines," IEEE Trans. Microwave Theory Tech., Vol. 43, 2991-2998, Jan. 1995.
doi:10.1109/22.475665

9. Borjak, A. M. and L. E. Davis, "On planar y-ring circulators," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 2, 177-181, Feb. 1994.
doi:10.1109/22.275243

10. Krowne, C. M. and R. E. Neidert, "Theory and numerical calculations for radially inhomogeneous circular ferrite circulators," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 3, 419-431, 1996.
doi:10.1109/22.486151

11. Polder, D., "On the theory of ferromagnetic resonance," Phil. Mag., Vol. 40, 99, 1949.

12. Singh, S., W. F. Richards, J. R. Zinecker, and D. R. Wilton, "Accelerating the convergence of series representing the free space periodic Green's function," IEEE Trans. Ant. Propagat., Vol. 38, No. 12, 1958-1962, Dec. 1990.
doi:10.1109/8.60985

13. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 2000.

14. Young, J. L., R. S. Adams, B. O'Neil, and C. M. Johnson, "Bandwidth optimization of an integrated microstrip circulator and antenna assembly: Part 2," IEEE Antennas Propagat. Mag., Vol. 49, No. 1, 82-91, Feb. 2007.
doi:10.1109/MAP.2007.370984