Vol. 35
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-10-19
Design, Simulation and Measurement of a Dual Linear Polarization Insensitive Planar Resonant Metamaterial Absorber
By
Progress In Electromagnetics Research Letters, Vol. 35, 135-144, 2012
Abstract
In this paper, we introduce a highly electric-field-coupled (ELC) metamaterial planar absorber in microwave frequency range. The structure is a one layer dual linear polarization insensitive absorber, which is designed by utilizing properly arranged resonant structure with orthogonal polarization sensitivity. In addition, this metamaterial absorber operates over a wide angular range, from 0° to 65° with more than 95% absorption peak. Absorption peak occurs at the frequency of 10.05 GHz with 98% magnitude with FWHM about 5%. In addition to simulation, the theoretically results are verified by measurement, and test results generally agree with simulation ones. The dielectric spacer loss tangent for higher absorption peak and broader bandwidth has been investigated too, and the optimum value for the best absorber structure performance has been obtained.
Citation
Sepideh Fallahzadeh, Keyvan Forooraghi, and Zahra Atlasbaf, "Design, Simulation and Measurement of a Dual Linear Polarization Insensitive Planar Resonant Metamaterial Absorber," Progress In Electromagnetics Research Letters, Vol. 35, 135-144, 2012.
doi:10.2528/PIERL12071606
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative value of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, Feb. 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structure," J. Phys. Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Strewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184

5. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2006.

6. Tao, H., A. C. Strikwerda, K. Fan, C. M. Bingham, W. J. Padilla, X. Zhang, and R. D. Averitt, "Terahertz metamaterials on free-standing highly-flexible polyimide substrates," Appl. Phys., Vol. 41, Nov. 2008.

7. Tao , H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optic. Exp., Vol. 16, No. 10, 7181-7188, May 2008.
doi:10.1364/OE.16.007181

8. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekehamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle incidence terahertz metamaterial absorber: Design, fabrication and characterization," Phys. Rew. B, Vol. 78, 2008.

9. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rew. Lett., Vol. 100, May 2008.

10. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication and characterization," Appl. Phys. Lett., Vol. 95, Dec. 2009.

11. Zhu, B., Z.-B. Wang, Z.-Z. Yu, Q. Zhang, J.-M. Zhao, Y.-J. Feng, and T. Jiang, "Planar metamaterial microwave absorber for all wave polarizations," Chin. Phys. Lett., Vol. 26, No. 11, 2009.

12. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," Appl. Phys. Lett., Vol. 43, 2010.

13. Cheng, Y. and H. Yang, "Design, simulation, and measurement of metamaterial absorber," J. Appl. Phys., Vol. 108, Aug. 2010.

14. Schuring, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, Nov. 2006.

15. Watts, C., X. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mat., Vol. 24, OP98, 2012.
doi:10.1002/adma.201200674

16. Pozar, D. M., Microwave Engineering, 2nd Ed., John Wiley & Sons, 1999, ISBN 0471170968.

17. Padilla, W. J., M. T. Aronsson, C. Highstrete, and M. Lee, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rew. Lett. B, Vol. 75, 2007.

18. Schuring, D., J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett., Vol. 88, 2006.