Vol. 35
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2012-09-20
Onset Time Determination of Acoustic and Electromagnetic Emission During Rock Fracture
By
Progress In Electromagnetics Research Letters, Vol. 35, 51-62, 2012
Abstract
We present an application of the Akaike Information Criterion (AIC) for an automatic and accurate determination of the acoustic and electromagnetic emission (AE and EME) onset times. The onset time information is used to derive the time delays between correlated AE and EME events from rock specimens during laboratory fracture experiments. The observed correlation in time between AE and EME events is consistent with EME release during microcrack growth. Relevant load drops are accompanied by AE bursts, expected to be generated during macrocracks propagation.
Citation
Gianni Niccolini, Jie Xu, Amedeo Manuello, Giuseppe Lacidogna, and Alberto Carpinteri, "Onset Time Determination of Acoustic and Electromagnetic Emission During Rock Fracture," Progress In Electromagnetics Research Letters, Vol. 35, 51-62, 2012.
doi:10.2528/PIERL12070203
References

1. Scholz, C. H., "Microfracturing and the inelastic deformation of rock in compression," J. Geophys. Res., Vol. 73, 1417, 1968.
doi:10.1029/JB073i004p01417

2. Carpinteri, A. and G. Lacidogna, "Damage monitoring of an historical masonry building by the acoustic emission technique," Materials and Structures (RILEM), Vol. 39, 161, 2006.
doi:10.1617/s11527-005-9043-2

3. Carpinteri, A., G. Lacidogna, and G. Niccolini, "Critical behavior in concrete structures and damage localization by Acoustic Emission," Key Eng. Mat., Vol. 312, 305, 2006.
doi:10.4028/www.scientific.net/KEM.312.305

4. Lacidogna, G., A. Carpinteri, A. Manuello, G. Durin, G. Niccolini, and A. Agosto, "Acoustic and electromagnetic emissions as precursor phenomena in failure processes,", 2010, Strain doi: 10.1111/j.1475-1305.2010.00750.x.

5. Carpinteri, A., G. Lacidogna, A. Manuello, G. Niccolini, A. Schiavi, and A. Agosto, "Mechanical and electromagnetic emissions related to stress-induced cracks," Experimental Techniques, Vol. 36, No. 3, 53, 2012.
doi:10.1111/j.1747-1567.2011.00709.x

6. Warwick, J. W., C. Stoker, and T. R. Meyer, "Radio emission associated with rock fracture: Possible application to the great chilean earthquake of May 22, 1960," J. Geophys. Res., Vol. 87, 2851, 1982.
doi:10.1029/JB087iB04p02851

7. Matsuda, T., C. Yamanaka, and M. Ikeya, "Behavior of stress-induced charges in cement containing quartz crystals," Phys. Stat. Sol. A, Vol. 2, 359, 2001.
doi:10.1002/1521-396X(200104)184:2<359::AID-PSSA359>3.0.CO;2-4

8. Klyuev, V. A., A. G. Lipson, Y. P. Toporov, A. D. Aliev, A. E. Chlyk, and B. V. Deriaghin, "Charactericescoye islucenye pri rasruscenii tverdikh tel i naruscenii adgesionni sviasei b vacuume," Dokl. Acad. Nauk SSSR, Vol. 279, 415, Russia, 1984.

9. Mognaschi, R. and U. Zezza, "Detection of electromagnetic emissions from fracture of rocks and building stones under stress," 5th International Congress on Restoration of Architectural Heritage, 553-562, Florence 2000.

10. Sleeman, R. and T. van Eck, "Robust automatic P-phase picking: An on-line implementation in the analysis of broadband seismogram recordings," Physics of the Earth and Planetary Interiors, Vol. 113, 265, 1999.
doi:10.1016/S0031-9201(99)00007-2

11. Earle, P. and P. M. Shearer, "Characterization of global seismograms using an automatic-picking algorithm," Bull. Seismol. Soc. Am., Vol. 84, 366, 1994.

12. Tong, C. and B. L. N. Kennett, "Automatic seismic event recognition and later phase identification for broadband seismograms," Bull. Seismol. Soc. Am., Vol. 86, 1896, 1996.

13. Withers, M., et al. "A comparison of select trigger algorithms for automated global seismic phase and event location," Bull. Seismol. Soc. Am., Vol. 88, 95, 1998.

14. Anant, K. S. and F. U. Dowla, "Wavelet transform methods for phase identification in three-component seismograms," Bull. Seismol. Soc. Am., Vol. 87, 1598, 1997.

15. Kurz, J., C. Grosse, and H. Reinhardt, "Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete," Ultrasonics, Vol. 43, 538, 2005.
doi:10.1016/j.ultras.2004.12.005

16. Zhang, H., C. Thurber, and C. Rowe, "Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings," Bull. Seismol. Soc. Am., Vol. 93, 1904, 2003.
doi:10.1785/0120020241

17. Hafez, A. G., T. A. Khan, and T. Kohda, "Clear P-wave arrival of weak events and automatic onset determination using wavelet filter banks," Digital Signal Proc., Vol. 20, 715, 2010.
doi:10.1016/j.dsp.2009.10.002

18. Akaike, H., "A new look at the statistical model identification," Trans. Automat. Contr., Vol. 19, 716, 1974.
doi:10.1109/TAC.1974.1100705

19. Yokota, T., S. Zhou, M. Mizoue, and I. Nakamura, "An automatic measurement of arrival time of seismic waves and its application to an on-line processing system," Bull. Earthq. Res. Inst., Vol. 55, 449, 1981.

20. Maeda, N., "A method for reading and checking phase times in auto-processing system of seismic wave data," Zisin, Vol. 38, 365, 1985.

21. Verkaeren, J. and P. Bartholome, "Petrology of the San Leone magnetite skarn deposit (S. W. Sardinia)," Economic Geology, Vol. 74, No. 53, 1979.

22. Santi, P., et al. "Leucite phonolite millstones from the Orvieto production centre: New data and insights into the roman trade," Periodico di Mineralogia, Vol. 73, No. 3, 57, 2004.

23. Frid, V., J. Goldbaum, A. Rabinovitch, and D. Bahat, "Depolarization in percussion drilling of Solenhofen limestone," J. Appl. Phys., Vol. 97, 014908-1, 1997.

24. Frid, V., A. Rabinovitch, and D. Bahat, "Crack velocity measurement by induced electromagnetic radiation," Phys. Lett. A, Vol. 356, 160, 2006.
doi:10.1016/j.physleta.2006.03.024

25. Arrighetti, W., P. DeCupis, and G. Gerosa, "Electromagnetic radiation from moving fractal sources: A plane-wave spectral approach," Progress In Electromagnetics Research, Vol. 58, 1-19, 2006.
doi:10.2528/PIER05072001

26. Pirhadi, A. and M. Hakkak, "An analytical investigation of the radiation characteristics of infinitesimal dipole antenna embedded in partially reflective surfaces to obtain high directivity," Progress In Electromagnetics Research, Vol. 65, 137-155, 2006.
doi:10.2528/PIER06081501

27. Chen, Z. and K.-M. Huang, "Using the oscillating dipoles model to study the electromagnetic radiation induced by fracture of rocks," Progress In Electromagnetics Research M, Vol. 14, 221-231, 2010.
doi:10.2528/PIERM10041802